Befolgen Sie beim Erfassen von Daten, Durchführen der Analyse und Interpretieren der Ergebnisse die folgenden Richtlinien, um sicherzustellen, dass die Ergebnisse gültig sind.
Eine stetige Variable kann gemessen und geordnet werden, und sie kann zwischen zwei beliebigen Werten eine unendliche Anzahl von Werten annehmen. Die Durchmesser einer Stichprobe von Reifen sind beispielsweise eine stetige Variable.
Kategoriale Variablen umfassen eine endliche, zählbare Anzahl von Kategorien oder eindeutigen Gruppen. Kategoriale Daten müssen nicht zwangsläufig eine logische Reihenfolge aufweisen. Zu den kategorialen Prädiktoren zählen beispielsweise Geschlecht, Materialtyp und Zahlungsmethode.
Wenn Sie über eine diskrete Variable verfügen, können Sie entscheiden, ob diese als stetiger oder als kategorialer Prädiktor behandelt werden soll. Ein diskrete Variable kann gemessen und geordnet werden, kann jedoch nur eine zählbare Anzahl von Werten annehmen. Die Anzahl der zu einem Haushalt zählenden Personen ist beispielsweise eine diskrete Variable. Die Entscheidung, eine diskrete Variable als stetig oder als kategorial zu behandeln, hängt von der Anzahl der Stufen sowie vom Zweck der Analyse ab. Weitere Informationen finden Sie unter Was sind kategoriale, diskrete und stetige Variablen?.
Wenn Sie die Analyse mit korrelierten Antwortvariablen durchführen, kann PLS multivariate Antwortmuster und schwächere Beziehungen erkennen, als dies bei einer separaten Analyse für jede Antwortvariable möglich wäre.
Wenn die Antwortvariable kategorial ist, besteht eine geringere Wahrscheinlichkeit, dass das Modell die Annahmen der Analyse erfüllt, die vorliegenden Daten genau beschreibt oder eine Grundlage für nützliche Prognosen darstellt.
Wenn die Prädiktoren nicht stark korrelieren und nicht mehr Prädiktoren als Beobachtungen vorliegen, können Sie die folgenden Alternativanalysen erwägen.
Wenn das Modell nicht gut an die Daten angepasst ist, können die Ergebnisse irreführend sein. Bestimmen Sie anhand der Residuendiagramme, der Statistiken für Modellauswahl und -validierung sowie des Antwortdiagramms in der Ausgabe, wie gut das Modell an die Daten angepasst ist.