项 | 系数 | 系数标准误 | T 值 | P 值 | 方差膨胀因子 |
---|---|---|---|---|---|
常量 | -4969 | 191 | -25.97 | 0.000 | |
温度 | 83.87 | 3.13 | 26.82 | 0.000 | 301.00 |
玻璃类型 | |||||
1 | 1323 | 271 | 4.89 | 0.000 | 3604.00 |
2 | 1554 | 271 | 5.74 | 0.000 | 3604.00 |
温度*温度 | -0.2852 | 0.0125 | -22.83 | 0.000 | 301.00 |
温度*玻璃类型 | |||||
1 | -24.40 | 4.42 | -5.52 | 0.000 | 15451.33 |
2 | -27.87 | 4.42 | -6.30 | 0.000 | 15451.33 |
温度*温度*玻璃类型 | |||||
1 | 0.1124 | 0.0177 | 6.36 | 0.000 | 4354.00 |
2 | 0.1220 | 0.0177 | 6.91 | 0.000 | 4354.00 |
在这些结果中,玻璃类型和温度的主效应在显著性水平为 0.05 时的统计意义显著。您可推断出这些变量的变化与响应变量的变化相关联。
在三种玻璃的实验中,输出结果显示出两种类型的系数。默认情况下,Minitab 会删除一个因子水平以避免完全多重共线性。因为分析使用 −1、0、+1 编码方案,主效应的系数代表每个水平均值和整体均值之间的差值。例如,玻璃类型 1 与光输出相关联,此输出比整体均值大 1323 个单位。
温度是此模型中的一个协变量。主效应的系数代表协变量中增加一个单位而模型中的其他项保持不变的均值响应变化。温度每增加 1 度,平均光输出就增加 83.87 个单位。
同时包含在高阶项中的玻璃类型和温度均在统计意义上显著。
玻璃类型和温度的双因子和三因子交互作用项在统计意义上显著。这些交互作用项表明每个变量和响应之间的关系取决于其他变量的值。例如,光输出中的玻璃类型效应取决于温度。
多项式“温度*温度”表明,温度和光输出之间关系的弯曲在统计意义上显著。
要确定模型与数据的拟合优度,请检查模型汇总表中的拟合优度统计量。
使用 S 可评估模型描述响应值的程度。使用 S 替代 R2 统计量,以比较不具有常量的模型拟合。
S 以响应变量的单位进行度量,它表示数据值与拟合值的距离。S 值越低,模型描述响应的程度越高。但是,自身低 S 值并不表明模型符合模型假设。您应检查残差图来验证假设。
R2 值越高,模型拟合数据的优度越高。R2 始终介于 0% 和 100% 之间。
如果向模型添加其他预测变量,则 R2 会始终增加。例如,最佳的 5 预测变量模型的 R2 始终比最佳的 4 预测变量模型的高。因此,比较相同大小的模型时 R2 最有效。
在想要比较具有不同数量的预测变量的情况下,使用调整的 R2。如果向模型添加预测变量,即使模型没有实际改善,R2 也会始终增加。调整的 R2 值包含模型中的预测变量数,以便帮助您选择正确的模型。
使用预测的 R2 可确定模型对新观测值的响应进行预测的程度。具有较大预测 R2 值的模型的预测能力也较出色。
实质上小于 R2 的预测的 R2 可能表明模型过度拟合。在向总体中添加不太重要的影响项的情况下,可能会发生过度拟合模型。模型针对样本数据而定制,因此可能对于总体预测不太有效。
在比较模型方面,预测的 R2 还可能比调整的 R2 更有效,因为它是用模型计算中未包含的观测值计算得出的。
样本数量较小则不能提供对于响应变量和预测变量之间关系强度的精确估计。如果需要 R2 更为精确,则应当使用较大的样本(通常为 40 或更多)。
拟合优度统计量只是模型拟合数据优度的一种度量。即使模型具有合意的值,您也应当检查残差图,以验证模型是否符合模型假设。
S | R-sq | R-sq(调整) | R-sq(预测) |
---|---|---|---|
19.1185 | 99.73% | 99.61% | 99.39% |
在这些结果中,模型解释了面板玻璃样本的光输出中 99.73% 的变异。对于这些数据,R2 值表明模型提供了对数据的优度拟合。如果其他模型与不同的预测变量拟合,请使用调整的 R2 值和预测的 R2 值来比较模型与数据的拟合度。
使用残差图可帮助您确定模型是否适用并符合分析的假设。如果不符合此假设,则模型可能无法充分拟合数据,在解释结果时应当格外小心。
有关如何处理残差图模式的更多信息,请转到拟合一般线性模型的残差图,然后单击页面顶部列表中残差图的名称。
使用残差与拟合值图可验证残差随机分布和具有常量方差的假设。理想情况下,点应当在 0 的两端随机分布,点中无可辨识的模式。
模式 | 模式的含义 |
---|---|
残差相对拟合值呈扇形或不均匀分散 | 异方差 |
曲线 | 缺少高阶项 |
远离 0 的点 | 异常值 |
在 X 方向远离其他点的点 | 有影响的点 |
使用残差正态概率图可验证残差呈正态分布的假设。残差的正态概率图应该大致为一条直线。
模式 | 模式的含义 |
---|---|
非直线 | 非正态性 |
远离直线的点 | 异常值 |
斜率不断变化 | 未确定的变量 |