为确保结果有效,在收集数据、执行分析和解释结果时,请考虑以下准则。
注意
如果使用参数分析来替代 Kruskal-Wallis 检验,则应验证您的数据是否满足该分析的数据要求。参数分析的数据要求并不总是与 Kruskal-Wallis 检验等非参数分析的要求相符。
- 数据应当仅包括一个作为固定因子的类别变量
-
有关因子的更多信息,请转到因子和因子水平以及固定和随机因子。
- 响应变量应当是连续变量
- 如果响应变量是类别变量,则您的模型不太可能满足分析假定、准确描述数据或者进行有用的预测。
- 样本数据不必为正态分布
-
各个组的分布应当具有相同的分布形状和散布,而且不包含异常值。
- 样本数量应当小于观测值个数(15 或 20),或者过程最好用中位数表示
-
非参数检验的功效往往小于参数检验的功效。而且,当样本数量足够大时,参数检验非常适合于非正态数据。除非样本数量非常小或者中位数对于您的研究更有意义,否则,即使对于非正态数据也请考虑使用参数检验。
如果您的数据满足下面的样本数量准则,请考虑使用
单因子方差分析,因为它对于偏斜的非正态分布非常有效,而且其功效更大。
- 数据包含 2 到 9 个组,每个组的样本数量至少为 15。
- 数据包含 10 到 12 个组,每个组的样本数量至少为 20。
- 每个组的样本数量应至少为五
- 如果一个样本包含的观测值少于五个,则 P 值可能不准确。
- 每个观测值都应当独立于所有其他观测值
-
如果您的观测值是相关的,则结果可能无效。请考虑以下几点来确定观测值是否为独立值:
- 如果一个观测值不提供有关另一个观测值的信息,则说明这两个观测值是独立的。
- 如果一个观测值提供有关另一个观测值的信息,则说明这两个观测值是相关的。
如果具有相关观测值,请转到分析重复的度量设计。有关样本的更多信息,请转到相关样本和独立样本有何不同?。
- 使用最佳做法收集数据
-
要确保结果有效,请考虑以下准则:
- 确保数据代表您感兴趣的总体。
- 收集足够多的数据以提供必要的精确度。
- 尽可能准确和精确地测量变量。
- 以数据的收集顺序记录数据。