Random Forests® 分类 的混淆矩阵

注意

此命令适用于 预测分析模块单击此处了解更多关于如何激活模块的信息

混淆矩阵使用以下度量来显示树分隔类别的正确程度:
  • 真阳率 (TPR) = 正确预测事件案例的概率
  • 假阳率 (FPR) = 非事件案例预测错误的概率
  • 假阴率 (FNR) = 事件案例预测错误的概率
  • 真阴率 (TNR) = 正确预测非事件案例的概率

解释

Random Forests® 分类: 心脏病 vs 年龄, 休息血压, 胆固醇, 最大心率, 老峰, 性, 胸痛类型, 禁食血糖, ...

混淆矩阵 预测类别 (OOB) 实际类别 计数 是的 不 正确百分比 是的 (事件) 139 109 30 78.42 不 164 26 138 84.15 所有 303 135 168 81.52 统计量 OOB (%) 真阳率(敏感度或功效) 78.42 假阳率(I 类错误) 15.85 假阴率(II 类错误) 21.58 真阴率(特异度) 84.15

在此示例中,“是”事件的总数为 139,而“否”的总数为 164。分析使用 OOB 数据来验证模型。

在 OOB 数据中,“是”事件的总数为 139,而“否”结果的总数为 164。
  • OOB 数据中预测的事件数(是)为 109,正确率为 78.42%。
  • OOB 数据中预测的非事件数(否)为 138,正确率为 84.15%。

总体而言,OOB 数据的正确百分比为 81.52%。使用 OOB 数据的结果可评估新观测值的预测准确度。

正确百分比低通常是由于模型拟合不足导致的。各种问题导致模型不足。如果正确百分比非常低,请考虑是修改用于拆分内部节点的最小案例数,还是更改分析为拆分节点而考虑的预测变量数。

使用此网站,即表示您同意对数据分析和个性化内容使用 Cookie。  请阅读我们的政策