Um consultor de marketing de uma empresa de cereais analisa a eficiência de uma propaganda de TV para um novo produto de cereal. O consultor mostra a propaganda em uma comunidade específica por uma semana. Em seguida, ele escolhe adultos aleatoriamente quando saem de um supermercado local para perguntar se eles viram a propaganda e compraram o novo cereal. O consultor também pergunta aos adultos se eles têm filhos e qual é a renda familiar anual.
Como a resposta é binária, o consultor usa regressão logística binária para determinar como a propaganda, ter filhos e a renda familiar anual estão relacionados à compra do cereal pelos adultos amostrados.
A tabela análise de variância mostra quais preditores têm uma relação estatisticamente significativa com a resposta. O consultor usa um nível de significância e os resultados indicam que as preditoras Filhos e ExibirAnúncio têm uma relação estatisticamente significativa com a resposta. Renda não tem uma relação estatisticamente significativa com a resposta porque o valor-p é maior do que 0,10. O consultor pode variar ao reajustar o modelo sem a variável de renda.
A razão de chances indica que os adultos com filhos têm aproximadamente mais probabilidade de comprar cereais do que os adultos que não têm filhos. A razão de chances para adultos que viram o anúncio indica que há 2,8 vezes de mais probabilidade de comprar o cereal do que adultos que ainda não viram o anuncio.
Os teste de qualidade do ajuste são todos maiores do que o nível de significância de 0,05, que indica que não há evidência suficiente para concluir que o modelo não se ajusta aos dados. O valor R2 indica que o modelo explica aproximadamente 12,¨% do deviance na resposta.