Visão geral para Regressão Random Forests®

Observação

Este comando está disponível com o Módulo de análise preditiva. Clique aqui saber mais sobre como ativar o módulo.

Use Regressão Random Forests® para criar um modelo de predição de alto desempenho para uma resposta contínua com muitas variáveis preditoras contínuas e categóricas. Regressão Random Forests® combina informações de muitas árvores CART® para proporcionar um avanço substancial na tecnologia de mineração de dados.

Regressão Random Forests® oferece insights para uma grande variedade de aplicações, incluindo controle de qualidade de fabricação, descoberta de drogas, detecção de fraudes, pontuação de crédito e predição de rotatividade. Use os resultados para identificar variáveis importantes, identificar grupos nos dados com características desejáveis e predizer os valores de resposta para novas observações. Por exemplo, um pesquisador de mercado pode usar Regressão Random Forests® para identificar clientes que têm taxas de resposta mais altas a iniciativas específicas e predizer essas taxas de resposta.

Regressão CART® é uma boa ferramenta de análise exploratória de dados e oferece um modelo fácil de entender para identificar rapidamente preditores importantes. No entanto, após a exploração inicial com Regressão CART®, considere Regressão TreeNet® ou Regressão Random Forests® como um passo de acompanhamento necessário.

a saída Regressão Random Forests® inclui gráficos de importância variável relativa e gráficos reais vs. ajustados Esses gráficos ajudam a avaliar se as variáveis do modelo predizem as classes de resposta com alta precisão e ajudam a identificar os preditores mais importantes para a exatidão da predição. Essas informações são úteis quando você deseja controlar as configurações que permitem um resultado de produção ótimo.

O método foi desenvolvido por Leo Breiman e Adele Cutler da Universidade da Califórnia, Berkeley.

Onde encontrar essa análise

Para realizar um Regressão Random Forests®, escolha Módulo de análise preditiva > Regressão do Random Forests®.

Quando usar uma análise alternativa

Se você quiser experimentar um modelo de regressão paramétrica com uma variável resposta contínua, use Ajuste do modelo de regressão.

Para análises mais aprofundadas, o Minitab oferece Regressão TreeNet®, e Regressão CART® analisa com o Módulo de análise preditiva. Clique aqui saber mais sobre como ativar o módulo.

Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política