Tabela Resumo do Modelo de Ajustar modelo de regressão

Encontre definições e interpretações para cada estatística na tabela Resumo do Modelo.

S

S representa o desvio padrão da distância entre os valores dos dados e os valores ajustados. S é medida em unidades de resposta.

Interpretação

Use S para avaliar se o modelo descreve bem a resposta. S é medido nas unidades da variável de resposta e representa o quão longe os valores de dados caem dos valores ajustados. Quanto mais baixo for o valor de S, melhor o modelo descreve a resposta. No entanto, um valor de S baixo por si só não indica que o modelo satisfaz aos pressupostos do modelo. Você deve verificar os gráficos de resíduos para conferir os pressupostos.

Por exemplo, você trabalha para um fabricante de batatas fritas que examina os fatores que afetam a porcentagem de batatas quebradas por embalagem. Você reduz o modelo para os preditores significativos, e S é calculado como 1,79. Este resultado indica que o desvio padrão dos pontos de dados em torno dos valores ajustados é 1,79. Se você estiver comparando modelos, valores menores do que 1,79 indicam um ajuste melhor, e valores mais altos indicam um ajuste pior.

R2

R2 representa a porcentagem de variação na resposta que é explicada pelo modelo. Ele é calculado como 1 menos a razão da soma dos quadrados dos erros (que é a variação que não é explicada pelo modelo) para a soma total dos quadrados (que é a variação total no modelo).

Interpretação

Use R2 para determinar se o modelo ajusta bem os dados. Quanto mais alto o valor de R2 melhor o modelo ajusta seus dados. O valor de R2 está sempre entre 0 e 100%.

Você pode usar um gráfico de linha ajustada para ilustrar graficamente valores de R2 diferentes. O primeiro gráfico ilustra um modelo de regressão simples que explica 85,5% da variação na resposta. O segundo gráfico ilustra um modelo que explica 22,6% da variação na resposta. Quanto mais variação é explicada pelo modelo, mais perto os pontos de dados caem da linha de regressão ajustada. Teoricamente, se um modelo pudesse explicar 100% da variação, os valores ajustados sempre se igualariam aos valores observados e todos os pontos de dados cairiam sobre a linha ajustada. No entanto, mesmo se R2 representar 100%, o modelo não necessariamente prediz bem as novas observações.
Considere as seguintes questões ao interpretar o valor de R2:
  • O R2 sempre aumenta quando você adiciona mais preditores a um modelo. Por exemplo, o melhor modelo de cinco preditores terá sempre um R2 que é pelo menos tão elevado quanto o melhor modelo de quatro preditores. Portanto, R2 é mais útil quando for comparado a modelos do mesmo tamanho.

  • Amostras pequenas não fornecem uma estimativa precisa da força da relação entre a resposta e os preditores. Por exemplo, se você precisar que R2 seja mais exato, deve usar uma amostra maior (geralmente, 40 ou mais).

  • A estatística de qualidade do ajuste é apenas uma medida do grau em que o modelo ajusta os dados (se ajusta bem ou mal). Mesmo quando um modelo tem um um valor desejável, você deve verificar os gráficos de resíduos para conferir se o modelo atende aos pressupostos do modelo.

R-sq (adj)

O R2 ajustado é a porcentagem de variação na resposta que é explicada pelo modelo, ajustada para o número de preditores do modelo em relação ao número de observações. O R2 ajustado é calculado como 1 menos a razão entre o quadrado médio do erro (QME) em relação ao quadrado médio total (QM total).

Interpretação

Use o R2 ajustado quando desejar comparar modelos que têm diferentes números de preditores. R2 sempre aumenta quando você adiciona um preditor ao modelo, mesmo quando não existe uma verdadeira melhoria ao modelo. O valor de R2 ajustado incorpora o número de preditores no modelo para ajudá-lo a escolher o modelo correto.

Por exemplo, você trabalha para um fabricante de batatas fritas que examina os fatores que afetam a porcentagem de batatas quebradas por embalagem. Você recebe os seguintes resultados ao adicionar os preditores em uma abordagem stepwise.
Modelo % Batata Taxa de resfriamento Temp de cozimento R2 R2 ajustado
1 X     52% 51%
0 X X   63% 62%
3 X X X 65% 62%

O primeiro modelo produz um R2 de mais de 50%. O segundo modelo adiciona a taxa de resfriamento ao modelo. O R2 ajustado aumenta, o que indica que a taxa de resfriamento melhora o modelo. O terceiro modelo, o que aumenta a temperatura de cozimento, aumenta o R2, mas não o R2 ajustado. Esses resultados indicam que a temperatura de cozimento não aprimoram o modelo. Com base nesses resultados, você considera remover a temperatura de cozimento do modelo.

PRESS

A soma dos quadrados predita (PRESS) do erro é uma medida do desvio entre os valores ajustados e os valores observados. PRESS é semelhante à soma dos quadrados dos erros residuais (SSE), que é o somatório dos quadrados dos resíduos. No entanto, PRESS usa um cálculo diferente para os resíduos. A fórmula utilizada para calcular PRESS é equivalente a um processo para remover sistematicamente cada observação do conjunto de dados, estimando a equação de regressão, e determinando o quão bem o modelo prediz a observação removida.

Interpretação

Use PRESS para avaliar a capacidade de predição do modelo. Normalmente, quanto menor o valor PRESS, melhor a capacidade de predição do modelo. O Minitab usa o PRESS é usada para calcular o R2 predito, que é geralmente mais intuitivo para ser interpretado. Juntas, essas estatísticas podem evitar o excesso de ajuste do modelo. Um modelo com excesso de ajuste ocorre quando você adiciona termos a efeitos que não são importantes na população, embora eles possam parecer importantes nos dados da amostra. O modelo se adapta aos dados de amostra e, por conseguinte, pode não ser útil para fazer predições em relação à população.

R2 (pred)

O R2 predito é calculado com uma fórmula que é equivalente à remoção sistemática de cada observação do conjunto de dados, estimando a equação de regressão e determinando se o modelo faz (ou não) uma boa predição da observação removida. O valor do R2 predito varia entre 0% e 100%. (Enquanto os cálculos do R2 predito podem produzir valores negativos, o Minitab exibe zero para esses casos).

Interpretação

Use R2 predito para determinar o quão bem seu modelo prediz as respostas para novas observações. Modelos que têm valores de R2 predito mais elevado têm melhor capacidade preditiva.

Um R2 predito que é substancialmente menor que o R2 pode indicar que o modelo está com excesso de ajuste. Um modelo com excesso de ajuste ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta aos dados de amostra e, por conseguinte, pode não ser útil para fazer predições em relação à população.

O R2 previsto também pode ser mais útil do que o R2 ajustado para a comparação de modelos, porque ele é calculado com as observações que não estão incluídas no cálculo do modelo.

Por exemplo, um analista de uma empresa de consultoria financeira desenvolve um modelo para prever as condições futuras do mercado. O modelo parece promissor porque tem um R2 de 87%. No entanto, o R2 predito é apenas para 52%, o que indica que o modelo pode estar com excesso de ajuste.

AICc e BIC

O Critério de Informação de Akaike Corrigido (AICc) e o Critério de Informação Bayesiano (BIC) são medidas da qualidade relativa de um modelo que consideram o ajuste e a quantidade de termos no modelo.

Interpretação

Use o AIC e o BIC para comparar modelos diferentes. É desejável que o resultado apresente valores menores. No entanto, o modelo com o menor valor para um conjunto de preditores não necessariamente ajusta bem os dados. Além disso use os testes e os gráficos de resíduos para avaliar se o modelo ajusta bem os dados.

Tanto AICc como BIC avaliam a verossimilhança do modelo e aplicam uma penalidade para adicionar termos ao modelo. Tal penalidade reduz a tendência de sobreajuste do modelo aos dados amostrais. Essa redução pode produzir um modelo com melhor desempenho geral.

Como orientação geral, quando o número de parâmetros é pequeno em relação ao tamanho amostral, o BIC tem uma penalidade maior do que o AICc para a adição de cada parâmetro. Nesses casos, o modelo que minimiza o BIC tende a ser menor do que o modelo que minimiza o AICc.

Em alguns casos comuns, tais como filtragens de experimento, o número de parâmetros geralmente é grande em relação ao tamanho amostral. Nesses casos, o modelo que minimiza o AICc tende a ser menor do que o modelo que minimiza o BIC. Por exemplo, para uma filtragem de experimento definitiva de 13 ensaios, o modelo que minimiza o AICc tenderá a ser menor que o modelo que minimiza o BIC no conjunto de modelos com 6 ou mais parâmetros.

Para obter mais informações sobre AICc e BIC, consulte Burnham e Anderson.1

Teste S

O Teste S resume a distância entre os valores dos dados e os valores ajustados no conjunto de dados de teste. O teste S é medido nas unidades da resposta.

Interpretação

Use o teste S para avaliar o desempenho do modelo em novos dados. Quanto menor o valor do teste S, mais próximas estão as predições do modelo para os valores reais no conjunto de dados de teste.

Um valor de S que seja substancialmente menor do que o valor do teste S pode indicar que o modelo está superajustado. Um modelo superajustado ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta aos dados amostrais e, portanto, pode não ser útil para fazer predições sobre a população.

Por exemplo, você trabalha para uma empresa de batatas chips que examina os fatores que afetam a porcentagem de batatas esfareladas por recipiente. Você reduz o modelo aos preditores significativos e descobre que S é 1,79, mas o teste S é 17,63. Como teste S é muito diferente de S do conjunto de treinamento, você determina que o teste S oferece uma indicação melhor do funcionamento do modelo para novos dados.

Um valor baixo do teste S não indica, por si só, que o modelo atende aos pressupostos do modelo.s do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.

Teste R2

O teste R2 é a porcentagem de variação na variável resposta do conjunto de dados de teste explicada pelo modelo. O valor do teste R2 varia entre 0% e 100%. (Embora os cálculos para o teste R2 possam produzir valores negativos, o Minitab Statistical Software exibe 0 para esses casos).

Interpretação

Use o teste R2 para determinar se seu modelo ajusta bem os novos dados. Os modelos que apresentam valores mais altos do teste R2 tendem a ter melhor desempenho com dados novos. Você pode usar o teste R2 para comparar o desempenho de diferentes modelos.

Um teste R2 que é substancialmente menor que R2 pode indicar que o modelo está superajustado. Um modelo superajustado ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta aos dados de treinamento e, portanto, pode não ser útil para fazer predições sobre a população.

Por exemplo, um analista de uma empresa de consultoria financeira desenvolve um modelo para predizer condições futuras do mercado. O modelo parece promissor porque tem um R2 de 87%. No entanto, o teste R2 é de 52%, o que indica que o modelo pode estar superajustado.

Um valor alto do teste R2 não indica, por si só, que o modelo atende aos pressupostos do modelo.s do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.

S de K duplicações

O S de K duplicações resume a distância entre os valores dos dados e os valores ajustados no conjunto de dados de teste. O S de K duplicações é medido nas unidades da resposta.

Interpretação

Use o S de K duplicações para avaliar o desempenho do modelo em novos dados. Quanto menor o valor do S de K duplicações, mais próximas estão as predições do modelo para os valores reais na duplicação quando os dados na duplicação não fazem parte da estimativa do modelo.

Um valor de S que seja substancialmente menor do que o valor de S de K duplicações pode indicar que o modelo está superajustado. Um modelo superajustado ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta aos dados amostrais e, portanto, pode não ser útil para fazer predições sobre a população.

Por exemplo, você trabalha para uma empresa de batatas chips que examina os fatores que afetam a porcentagem de batatas esfareladas por recipiente. Você reduz o modelo aos preditores significativos e descobre que S é 1,79, mas S de K duplicações é 17,63. Como S de K duplicações é muito diferente de S do conjunto de treinamento, você determina que S de K duplicações oferece uma indicação melhor do funcionamento do modelo para novos dados.

Um valor baixo de S de K duplicações não indica, por si só, que o modelo atende aos pressupostos do modelo.s do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.

R2 de K duplicações

O R2 de K duplicações é a porcentagem de variação na variável resposta das duplicações de dados explicada pelo modelo. O valor de R2 de K duplicações varia entre 0% e 100%. (Embora os cálculos para R2 de K duplicações possam produzir valores negativos, o Minitab Statistical Software exibe 0 para esses casos).

Interpretação

Use o R2 de K duplicações para determinar se seu modelo ajusta bem os novos dados. Os modelos que apresentam valores mais altos de R2 de K duplicações tendem a ter melhor desempenho com dados novos. Você pode usar o R2 de K duplicações para comparar o desempenho de diferentes modelos.

Um R2 de K duplicações que é substancialmente menor que R2 pode indicar que o modelo está superajustado. Um modelo superajustado ocorre quando você adiciona termos para efeitos que não são importantes na população. O modelo se adapta aos dados de treinamento e, portanto, pode não ser útil para fazer predições sobre a população.

Por exemplo, um analista de uma empresa de consultoria financeira desenvolve um modelo para predizer condições futuras do mercado. O modelo parece promissor porque tem um R2 de 87%. No entanto, o R2 de K duplicações é de 52%, o que indica que o modelo pode estar superajustado.

Um valor alto de R2 de K duplicações não indica, por si só, que o modelo atende aos pressupostos do modelo.s do modelo. Você deve observar os gráficos de resíduos para verificar os pressupostos.

R2 stepwise de K duplicações

O R2 stepwise de K duplicações avalia o número de termos em um modelo de um conjunto de termos candidatos. Quando ocorrem valores negativos para o R2 stepwise de K duplicações, o Minitab os exibe.

Interpretação

Use R2 stepwise de K duplicações para determinar o número de termos em um modelo. O Minitab calcula o R2 stepwise de K duplicações quando a seleção forward com validação é realizada com validação cruzada de K duplicações. O R2 stepwise de K duplicações resulta de seleções forward separadas para cada duplicação. O Minitab usa o R2 stepwise de K duplicações para determinar a melhor etapa na seleção forward. Depois de concluída a seleção forward para cada duplicação, o Minitab realiza a seleção forward no conjunto completo de dados. Com o conjunto de dados completo, o Minitab produz resultados de regressão para o modelo na melhor etapa de acordo com o critério do R2 stepwise de K duplicações.

Para avaliar o desempenho preditivo de um modelo com validação cruzada de K duplicações, use a estatística R2 de K duplicações.

Cp de Mallows

A Cp de Mallows pode ajudar a escolher entre modelos de regressão múltipla concorrentes. A Cp de Mallows compara o modelo completo com os modelos com os subconjuntos de preditores. Ele ajuda a obter um equilíbrio importante com o número de preditores no modelo. Um modelo com preditores demais pode ser relativamente impreciso, enquanto um modelo com muito poucos preditores pode produzir estimativas viciadas. A utilização da Cp de Mallows para comparar modelos de regressão só é válida quando você começa com o mesmo conjunto completo de preditores.

Interpretação

Um valor de Cp de Mallows que está próximo do número de preditoras mais a constante indica que o modelo produz estimativas relativamente precisas e não-viciadas.

Um valor de Cp de Mallows que é maior que o número de preditores mais a constante indica que o modelo é viciado e não ajusta bem os dados.

1 Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. doi:10.1177/0049124104268644
Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política