Exemplo de Gráficos fatoriais com um experimento fatorial.

Um engenheiro de materiais de um fabricante de produtos de construção está desenvolvendo um novo produto de isolamento. O engenheiro cria um experimento fatorial completo de 2 níveis para avaliar vários fatores que poderiam afetar a potência, a densidade e o valor isolante do isolamento.

O engenheiro ajusta o modelo de experimento fatorial e usa Gráficos fatoriais para compreender melhor os efeitos.

  1. Abra os dados das amostras, PropriedadesDoIsolamento_modelo.MTW.
  2. Selecione Estat > DOE (Planejamento de Experimento) > Fatorial > Gráficos Fatoriais.
  3. Em Resposta, selecione Isolamento.
  4. Em Variáveis para Incluir nos Gráficos, mova Material, TempInj e TempFria a partir na lista de Disponível para a lista de Selecionada.
  5. Clique em OK.

Interpretar os resultados

O gráfico de interação mostra a média ajustada do valor do isolamento versus as combinações de material, temperatura de injeção e temperatura de resfriamento. Este gráfico mostra efeitos de interação aparentes porque as linhas não são todas paralelas, o que implica que a relação entre o valor de isolamento e cada fator depende da definição de um outro fator. Os resultados de Analisar um experimento fatorial indicam que os efeitos de interação para Material*CoolTemp e InjTemp*CoolTemp são estatisticamente significativos.

O gráfico para a interação Material*TempArref mostra que o efeito da temperatura de arrefecimento sobre o isolamento é maior do que para a Fórmula 1 para a Fórmula 2.

A relação entre o valor de isolamento e a temperatura de injeção depende da temperatura de arrefecimento. Quando o produto é fabricado com InjTemp 85, o valor de isolamento é quase igual para ambas as temperaturas de arrefecimento. No entanto, com InjTemp 100, a temperatura de arrefecimento está associada a valores de isolamento substancialmente diferentes. InjTemp 100 e CoolTemp45 estão associados com os valores de isolamento mais elevados.

Os gráficos de efeitos principais mostram as médias ajustadas para cada nível de cada variável categórica. Como as linhas não são horizontais, os efeitos principais estão presentes em todas essas variáveis. Os resultados de Analisar um experimento fatorialconfirmam que os efeitos principais são todos estatisticamente significativos. No entanto, como os efeitos de interação são estatisticamente significativos, o gráfico de efeitos principais podem ser enganador. Consequentemente, não é possível interpretar os efeitos principais sem considerar os efeitos de interação.

Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política