Tabela de Regressão Logística para Regressão logística ordinal

Encontre definições e orientações de interpretação para cada estatística na tabela Regressão Logística.

Coef

A regressão logística ordinal estima um coeficiente para cada termo do modelo. Os coeficientes para os termos no modelo são os mesmos para cada categoria de resultado.

A regressão logística ordinal também estima um coeficiente de constante para todos, exceto uma das categorias de resultados. Os coeficientes de constante, em combinação com os coeficientes para variáveis, formam um conjunto de equações de regressão binária. A primeira equação estima a probabilidade de que o primeiro evento ocorra. A segunda equação estima a probabilidade de que o primeiro e o segundo eventos ocorram. A terceira equação estima a probabilidade de que o primeiro, o segundo ou terceiro eventos ocorram, e assim por diante. O Minitab rotula esses coeficientes de constante como Const (1), Const (2) e Const (3), e assim por diante.

Interpretação

Use os coeficientes para examinar como a probabilidade de um resultado muda conforme as variáveis preditoras mudam. O coeficiente estimado para um preditora representa a mudança na função de link para cada mudança de unidade na preditora, enquanto as outras preditoras no modelo são consideradas constantes. A relação entre o coeficiente e a probabilidade de um resultado depende de diversos aspectos da análise, incluindo a função de ligação, a ordem das categorias de resposta e os níveis de referência para preditoras categóricas que estão no modelo. Geralmente, os coeficientes positivos tornam o primeiro evento e os eventos que estão próximos a ele mais prováveis conforme a preditora aumenta. Coeficientes negativos tornam o último evento e os eventos mais próximos dele, mais prováveis conforme a preditora aumenta. Um coeficiente estimado próximo de 0 implica que o efeito da preditora é pequeno.

Por exemplo, uma análise de uma pesquisa de satisfação do paciente examina a relação entre a distância da qual um paciente veio e quão provável é o retorno desse paciente. O primeiro evento é o primeiro na tabela de informações de resposta. Neste caso, o primeiro evento é "Muito provável" e o último evento é "Improvável." O coeficiente negativo para distância mostra que conforme a distância aumenta, há maior probabilidade de os pacientes respondem "Improvável".

Informações da Resposta Variável Valor Contagem Consulta de Retorno Muito Provável 19 Um Pouco Provável 43 Improvável 11 Total 73
Tabela de Regressão Logística Razão de IC de 95% Preditor Coef. EP de Coef Z P Chances Inferior Superior Const(1) -0,505898 0,938791 -0,54 0,590 Const(2) 2,27788 0,985924 2,31 0,021 Distância -0,0470551 0,0797374 -0,59 0,555 0,95 0,82 1,12

Para preditoras categóricas, a mudança é do nível de referência para o nível da preditora que está na tabela de regressão logística. Geralmente, os coeficientes positivos indicam que o primeiro evento é mais provável no nível do fator que está na tabela de regressão logística do que no nível de referência do fator. Os coeficientes negativos indicam que o último evento é mais provável no nível do fator que está na tabela de regressão logística do que no nível de referência do fator.

Por exemplo, uma análise da pesquisa de satisfação do paciente examina a relação entre a situação de emprego de um paciente e quão provável é o retorno desse paciente. O primeiro evento é "Muito provável" e o último evento é "Improvável". A situação de emprego pode ser "Desempregado" ou "Empregado". O nível de referência da preditora, que não está na tabela de regressão logística, é "Empregado". O coeficiente negativo com o nível "Desempregado" indica que há maior probabilidade de os pacientes que estão desempregados responderem "Improvável" do que pacientes empregados.

Informações da Resposta Variável Valor Contagem Consulta de Retorno Muito Provável 19 Um Pouco Provável 43 Improvável 11 Total 73
Tabela de Regressão Logística IC de Razão de 95% Preditor Coef. EP de Coef Z P Chances Inferior Const(1) -1,33898 0,361040 -3,71 0,000 Const(2) 1,49169 0,373022 4,00 0,000 Status do Funcionário Empregado 0,631468 0,471078 1,34 0,180 1,88 0,75
Observação

Os coeficientes de constante se combinam com os termos das preditoras para estimar as probabilidades. O Minitab pode armazenar essas probabilidades para observações na worksheet quando você realiza a análise. Para obter mais informações, vá para Armazenar estatísticas para Regressão logística ordinal.

Coeficiente de SE

O erro padrão do coeficiente estima a variabilidade entre a estimativa do coeficiente que seria obtida caso fossem extraídas amostras da mesma população por vezes seguidas. O cálculo pressupõe que o tamanho da amostra e os coeficientes para estimativa permaneceriam os mesmos caso fossem extraídas repetidas amostras.

Interpretação

Use o erro padrão do coeficiente para medir a precisão da estimativa do coeficiente. Quanto menor o erro padrão, mais precisa é a estimativa.

Valor Z

O valor Z é uma estatística de teste que mede a razão entre o coeficiente e seu erro padrão.

Interpretação

O Minitab usa o valor Z para calcular o valor-p, que pode ser usado para a tomada de uma decisão sobre a significância estatística dos termos e do modelo. O teste de Wald é exato quando o tamanho da amostra é grande o bastante de forma que a distribuição dos coeficientes da amostra segue uma distribuição normal.

Um valor-z que está suficientemente longe de 0 indica que a estimativa do coeficiente é amplo e preciso o bastante para ser estatisticamente diferente de 0. Inversamente, um valor-z que está perto de 0 indica que a estimativa do coeficiente é muito pequena ou muito imprecisa para estar certa de que o termo tem um efeito na resposta.

Valor-p

O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.

Interpretação

Para determinar se a associação entre a resposta e cada termo no modelo é estatisticamente significativa, compare o valor-p para o termo com o seu nível de significância a fim de avaliar a hipótese nula. A hipótese nula é que o coeficiente do termo é igual a zero, o que implica a não existência de uma associação entre o termo e a resposta. Geralmente, um nível de significância (denotado como α ou alfa) de 0,05 funciona bem. Um nível de significância de 0,05 indica um risco de 5% de se concluir que existe uma associação quando não existe uma associação real.
Valor-p ≤ α: a associação é estatisticamente significativa
Se o valor-p for menor ou igual ao nível de significância, é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e o termo.
Valor-p > α: a associação não é estatisticamente significativa
Se o valor-p for maior ou igual ao nível de significância, não é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e o termo. Talvez seja necessário reajustar o modelo sem o termo.
Se houver vários preditores sem uma associação estatisticamente significativa com a resposta, você pode reduzir o modelo removendo os termos um de cada vez. Para obter mais informações sobre como remover os termos do modelo, vá para Redução de modelo.
Se um termo do modelo for estatisticamente significativo, a interpretação dependerá do tipo de termo. As interpretações são da seguinte maneira:
  • Se uma preditora contínua for significativa, é possível concluir que as probabilidades do nível de resposta dependem da preditora.
  • Se uma preditora categórica for significativa, você pode concluir que os níveis de resposta têm diferentes probabilidades de ocorrer naquele nível do fator, do que no nível da referência do fator.
  • Se um termos de interação for significativo, você pode concluir que a relação entre uma preditora e as probabilidades de nível de resposta depende de outras preditoras no termo.
  • Se um termo polinomial for significativo, você pode concluir que a relação entre uma preditora e as probabilidades de nível de resposta depende da magnitude da preditora.

Razão de chances

A razão de chances compara as chances de dois eventos. As chances de um evento são a probabilidade de que o evento ocorra dividida pela probabilidade de que o evento não ocorra. O Minitab calcula razões de chances quando o modelo usa a função de ligação logit.

Interpretação

Use a razão de chances para compreender o efeito de uma preditora. A interpretação da razão de chances depende se a preditora é categórica ou contínua.

Razões de chances para preditoras contínuas

As razões de chances que são maiores do que 1 indicam que o primeiro evento e os eventos mais próximos ao primeiro evento são mais prováveis conforme a preditora aumenta. As razões de chances que são menos do que 1 indicam que o último evento e os eventos que estão próximos a elas são mais prováveis conforme a preditora aumenta.

Por exemplo, uma análise de uma pesquisa de satisfação do paciente examina a relação entre a distância da qual um paciente veio e quão provável é o retorno desse paciente. O primeiro evento é o primeiro na tabela de informações de resposta. Neste caso, o primeiro evento é "Muito provável" e o último evento é "Improvável." A razão de chances de 0,95 para distância mostra que conforme a distância aumenta, há maior probabilidade de os pacientes respondem "Improvável." Para cada quilômetro adicional que um paciente viaja, as chances de que o paciente responda "Muito provável" em vez de "Um pouco provável" ou "Improvável" diminuem em cerca de 5%.

Informações da Resposta Variável Valor Contagem Consulta de Retorno Muito Provável 19 Um Pouco Provável 43 Improvável 11 Total 73
Tabela de Regressão Logística Razão de IC de 95% Preditor Coef. EP de Coef Z P Chances Inferior Superior Const(1) -0,505898 0,938791 -0,54 0,590 Const(2) 2,27788 0,985924 2,31 0,021 Distância -0,0470551 0,0797374 -0,59 0,555 0,95 0,82 1,12
Razões de chances para preditoras categóricas

Para preditoras categóricas, a razão de chances compara as chances do evento ocorrer em dois níveis diferentes da preditora. As razões de chances que são maiores do que 1 indicam que o primeiro evento e os eventos mais próximos do primeiro evento são mais prováveis no nível da preditora na tabela de regressão logística do que no nível de referência da preditora. As razões de chances que são menores do que 1 indicam que o último evento e os eventos que são próximos a ele são mais prováveis no nível da preditora na tabela de regressão logística do que no nível de referência.

Por exemplo, uma análise da pesquisa de satisfação do paciente examina a relação entre a situação de emprego de um paciente e quão provável é o retorno desse paciente. O primeiro evento é "Muito provável" e o último evento é "Improvável". A situação de emprego pode ser "Desempregado" ou "Empregado". O nível de referência da preditora, que não está na tabela de regressão logística, é "Empregado". A razão de chances é menor que 1, portanto, é mais provável que um paciente empregado responda que é "Muito provável" que ele retorne do que um paciente desempregado. As chances de que um paciente desempregado responda com "Muito provável" em vez de "Um pouco provável" ou "Improvável" são 53% das chances de que um paciente empregado responda com "Muito provável". Além disso, as chances de que um paciente desempregado responda com "Muito provável" ou "Um pouco provável" em vez de "Improvável" são 53% das chances de que um paciente empregado responda com "Muito provável" ou "Um pouco provável".

Informações da Resposta Variável Valor Contagem Consulta de Retorno Muito Provável 19 Um Pouco Provável 43 Improvável 11 Total 73
Tabela de Regressão Logística IC de Razão de 95% Preditor Coef. EP de Coef Z P Chances Inferior Const(1) -1,33898 0,361040 -3,71 0,000 Const(2) 1,49169 0,373022 4,00 0,000 Status do Funcionário Empregado 0,631468 0,471078 1,34 0,180 1,88 0,75
Observação

As razões de chances usam a ordem das categorias, portanto, as razões não descrevem como as chances mudam para categorias que estão fora da ordem. Por exemplo, a razão de chances não descreve a mudança nas chances de que o paciente responda com "Um pouco provável" em vez de "Muito provável" ou "Improvável". Para modelar categorias em uma ordem arbitrária, use a regressão logística nominal.

Intervalo de confiança para a razão de chances (IC de 95%)

Estes intervalos de confiança (IC) são amplitudes de valores que apresentam a probabilidade de conter os valores verdadeiros das razões de chances. O cálculo dos intervalos de confiança usa a distribuição normal. O intervalo de confiança é exato se o tamanho da amostra for grande o bastante de forma que a distribuição das razões de chances da amostra siga uma distribuição normal.

Como as amostras são aleatórias, é improvável que duas amostras de uma população produzam intervalos de confiança idênticos. No entanto, se você extrair muitas amostras aleatórias, uma determinada porcentagem dos intervalos de confiança resultantes conterá o parâmetro populacional desconhecido. A porcentagem destes intervalos de confiança que contém o parâmetro é o nível de confiança do intervalo.

O intervalo de confiança é composto pelas duas partes a seguir:
Estimativa de ponto
Este valor único estima um parâmetro populacional usando os seus dados amostrais. O intervalo de confiança é centrado em torno da estimativa pontual.
Margem de erro
A margem de erro define a largura do intervalo de confiança e é determinada pela variabilidade observada na amostra, o tamanho da amostra e o nível de confiança. Para calcular o limite superior do intervalo de confiança, a margem de erro é adicionada à estimativa pontual. Para calcular o limite inferior do intervalo de confiança, a margem de erro é subtraída da estimativa pontual.

Interpretação

Use o intervalo de confiança para avaliar a estimativa da razão de chances.

Por exemplo, com um nível de confiança de 95%, é possível ter 95% de certeza de que o intervalo de confiança contém o valor da razão de chances para a população. O intervalo de confiança ajuda a avaliar a significância prática de seus resultados. Use seu conhecimento especializado para determinar se o intervalo de confiança inclui valores que tenham significância prática para a sua situação. Se o intervalo for muito amplo para ser útil, pense em aumentar o tamanho da amostra.

Teste para termos com mais de 1 grau de liberdade

Esse teste é um teste geral que considera todos os coeficientes para uma preditora categórica simultaneamente. O teste é para preditoras categóricas com mais de 2 níveis.

Interpretação

Use o teste para determinar se uma preditora categórica com mais de 1 coeficiente tem uma relação estatisticamente significativa com os eventos de resposta. Quando uma preditora categórica tem mais de 2 níveis, os coeficientes para os níveis individuais têm valores-p diferentes. O teste geral dá uma resposta única sobre se a preditora é estatisticamente significativa.

Para determinar se a associação entre os eventos da resposta e a preditora categórica é estatisticamente significativa, compare o valor-p do teste ao seu nível de significância para avaliar a hipótese nula. A hipótese nula é que não há nenhuma associação entre os eventos da preditora e os eventos da resposta. Geralmente, um nível de significância (denotado como α ou alfa) de 0,05 funciona bem. Um nível de significância de 0,05 indica um risco de 5% de se concluir que existe uma associação quando não existe uma associação real.
Valor de p ≤ α: a associação é estatisticamente significativa
Se o valor-p for menor ou igual ao nível de significância, é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e a preditora.
Valor-p > α: a associação não é estatisticamente significativa
Se o valor-p for maior que o nível de significância, não é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e a preditora.

Log-verossimilhança

O Minitab maximiza a função log-verossimilhança para encontrar valores ótimos dos coeficientes estimados.

Interpretação

Use a log-verossimilhança para comprar dois modelos que usam os mesmos dados para estimar os coeficientes. Como os valores são negativos, quanto mais próximo de 0 o valor, melhor o modelo se ajusta aos dados.

A log-verossimilhança não pode diminuir quando você adiciona termos a um modelo. Por exemplo, um modelo com 5 termos tem maior log-verossimilhança do que quaisquer dos modelos de 4 termos que você pode criar com os mesmos termos. Portanto, a log-verossimilhança é mais útil quando você compara modelos do mesmo tamanho. Para tomar decisões sobre termos individuais, você normalmente examina os valores-p para o termo nos diferentes logits.

Testar que todas as inclinações sejam zero

Esse teste é um teste geral que considera todos os coeficientes para preditoras no modelo.

Interpretação

Use o teste para determinar se pelo menos uma das preditoras do modelo tem uma associação estatisticamente significativa com os eventos da resposta. Normalmente, você não interpreta a estatística G ou os graus de liberdade (DF). Os DF são iguais ao número de coeficientes das preditoras no modelo.

Para determinar se a associação entre os eventos da resposta e as preditoras é estatisticamente significativa, compare o valor-p do teste ao seu nível de significância para avaliar a hipótese nula. A hipótese nula é que todos os coeficientes das preditoras no modelo são zero, que implica que não existe nenhuma associação entre os eventos de resposta e quaisquer das preditoras. Geralmente, um nível de significância (denotado como α ou alfa) de 0,05 funciona bem. Um nível de significância de 0,05 indica um risco de 5% de se concluir que uma existe associação quando não existe uma associação real.
Valor-p ≤ α: a associação é estatisticamente significativa
Se o valor-p for menor ou igual ao nível de significância, é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e pelo menos uma das preditoras.
Valor-p > α: a associação não é estatisticamente significativa
Se o valor-p for maior que o nível de significância, não é possível concluir que há uma associação estatisticamente significativa entre a variável de resposta e quaisquer dos termos.
Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política