유효한 결과를 얻으려면 데이터를 수집하고 분석을 수행하거나 결과를 해석할 때 다음 지침을 따르십시오.
- 데이터가 숫자여야 합니다.
- 계량형 데이터(예: 포장의 무게) 또는 이산형 데이터(예: 고객 불만 수)가 있어야 합니다. 카운트 데이터 표본을 요약하려면 개별 변수
빈도표을 사용하십시오.
- 표본 데이터는 랜덤하게 선택해야 합니다.
-
통계에서 랜덤 표본은 모집단에 대한 일반화 또는 추론을 작성하기 위해 사용됩니다. 데이터가 랜덤하게 수집되지 않은 경우에는 결과가 모집단을 나타내지 않을 수 있습니다. 자세한 내용은 데이터 표본의 랜덤성에서 확인하십시오.
- 중간 규모에서 대규모의 데이터 표본 수집
- 관측치가 20개 미만인 표본은 보통 데이터의 분포를 적절하게 나타냅니다. 그러나 히스토그램을 사용하여 분포를 더 잘 나타내기 위해 일부 실무자는 관측치를 50개 이상 추출할 것을 권장합니다. 또한 표본이 클수록 공정 모수(예: 평균, 표준 편차)의 더 정확한 추정치를 제공합니다.