참고

이 명령은 예측 분석 모듈에서 사용할 수 있습니다. 모듈을 활성화하는 방법에 대한 자세한 내용은 여기를 클릭하십시오.

한 연구팀이 아이오와주 에임스에 있는 개별 주거용 부동산의 매각에서 데이터를 수집합니다. 연구원들은 판매 가격에 영향을 미치는 변수를 파악하고자 합니다. 변수에는 대지 규모와 주거용 부동산의 다양한 특징들이 포함됩니다.

팀은 중요한 예측 변수를 식별하기 위해 CART® 회귀 분석을 사용한 초기 탐색 후 Random Forests® 회귀 분석을(를) 사용하여 동일한 데이터 집합에서 보다 집중적인 모형을 만듭니다. 팀은 모형 요약 표와 결과의 R2 그림을 비교하여 어떤 모형이 더 나은 예측 결과를 제공하는지 평가합니다.

이러한 데이터는 에임스 주택 공급에 대한 정보가 포함된 공개 데이터를 기준으로 조정되었습니다. DeCock, 트루먼 주립대학의 원본 데이터.

  1. 표본 데이터 세트를 엽니다 에임스주택.MTW.
  2. 예측 분석 모듈 > Random Forests® 회귀을 선택합니다.
  3. 반응에서 판매 가격를 입력합니다.
  4. 계량형 예측 변수에서 로트 프론트년 판매를 입력합니다.
  5. 범주형 예측 변수에서 유형판매 조건를 입력합니다.
  6. 옵션을 클릭합니다.
  7. 노드 분할 예측 변수 수에서 총 예측 변수 수의 K%, K =을 선택하고 30을 입력합니다. 연구원들은 이 분석을 위해 기본 예측 변수 수를 넘게 사용하고자 합니다.
  8. 각 대화 상자에서 확인를 클릭합니다.

결과 해석

이 분석의 경우 관측치 수는 2930입니다. 300개의 각 부트스트랩 표본은 2930개의 관측치를 대체하면서 임의로 선택하여 트리를 만듭니다. 또한 이 방법은 노드를 분할하는 예측 변수의 총 수의 30%를 사용합니다. 또한 반응 정보 표에는 관측치에 대한 일반적인 기술 통계량이 표시됩니다.

Random Forests® 회귀: 판매 가격 대 로트 프론트, 로트 지역, 베니어 지역, 지하 1층, 지하 2층, 지하 미완성 지역, ...

방법 모형 검증 OOB 데이터로 검증 부트스트랩 표본 수 300 표본 크기 학습 데이터 크기 2930과 동일 노드 분할을 위해 선택된 예측 변수 수 총 예측 변수 수의 30% = 23 최소 내부 노드 크기 5 사용된 행 2930
반응 정보 평균 표준 편차 최소값 Q1 중위수 Q3 최대값 180796 79886.7 12789 129500 160000 213500 755000

R-제곱 대 트리 수 그림은 성장한 트리 수에 대한 전체 곡선을 보여줍니다. R2 값은 트리 수가 증가함에 따라 빠르게 급증한 다음 약 91%로 평평해집니다.

Random Forests® 회귀: 판매 가격 대 로트 프론트, 로트 지역, 베니어 지역, 지하 1층, 지하 2층, 지하 미완성 지역, ...

모형 요약 전체 예측 변수 77 중요 예측 변수 68 통계량 OOB R-제곱 90.90% 루트 평균 제곱 오차(RMSE) 24097.3281 평균 제곱 오차(MSE) 580681222.4890 평균 절대 편차(MAD) 14746.8323 평균 절대 백분율 오차(MAPE) 0.0895

모형 요약 표는 해당 CART® 분석의 R2 값에 비해 R2 값이 약간 향상되어 있음을 보여줍니다.

상대 변수 중요도 그래프는 트리 시퀀스에 대한 예측 변수에 분할이 이루어질 때 모형 개선에 미치는 영향 순으로 예측 변수를 표시합니다. 판매가를 예측하기 위한 가장 중요한 예측 변수는 품질입니다. 상위 예측 변수의 중요도가 100%인 경우 다음으로 중요한 변수인 거실 면적 SF의 기여도는 88.8%입니다. 즉, 거실의 평방피트는 자산의 전체 품질만큼 중요한 88.8%입니다. 다음으로 가장 중요한 변수는 기여도가 52.6%인 이웃입니다.

적합된 판매가 대 실제 판매가의 산점도는 OOB 데이터에 대한 적합치와 실제 값 간의 관계를 보여줍니다. 그래프의 점 위로 마우스 포인터를 옮기면 표시된 값을 보다 쉽게 볼 수 있습니다. 이 예제에서 y=x의 참조 선 부근에 많은 점이 있지만 몇 개의 점은 적합치와 실제 값 간의 불일치를 확인하기 위해 조사가 필요할 수 있습니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오