Random Forests® 분류에 대한 수신자 검사 특성(ROC) 곡선

참고

이 명령은 예측 분석 모듈에서 사용할 수 있습니다. 모듈을 활성화하는 방법에 대한 자세한 내용은 여기를 클릭하십시오.

ROC 곡선은 y축에 검정력이라고도 하는 진양성률(TPR)을 플로팅합니다. ROC 곡선은 x축에서 유형 1 오차라고도 하는 가양성률(FPR)을 표시합니다. ROC 곡선 아래 면적은 모형이 올바른 분류자인지 여부를 나타냅니다.

해석

분류 트리의 경우 ROC 곡선 아래 면적 값 범위는 0.5에서 1 사이입니다. 값이 클수록 더 좋은 분류 모형을 나타냅니다. 이항 모형이 클래스를 완벽하게 구분할 수 있는 경우 곡선 아래 면적은 1입니다. 이항 모형이 임의 할당보다 등급을 더 잘 구분할 수 없는 경우 곡선 아래 면적은 0.5입니다. 빨간색 점선은 임의 할당 사례를 나타냅니다.

OOB 데이터가 있는 곡선 아래 영역은 약 0.90입니다. 곡선 아래 영역을 사용하여 Random Forests® 분류의 정확도를 TreeNet® 분류와 같은 다른 모형과 비교할 수 있습니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오