일반 선형 모형 적합에 대한 단계적 회귀 분석 수행

통계분석 > 분산 분석 > 일반 선형 모형 > 일반 선형 모형 적합 > 단계적 회귀 분석

변량 요인이 포함된 모형에서는 단계적 절차를 사용할 수 없습니다.

방법

단계적 절차는 유용한 항의 부분 집합을 식별하기 위해 모형에서 항을 제거하거나 추가합니다. 단계적 절차를 선택하는 경우, 모형 대화 상자는 최종 모델의 후보입니다. 자세히 알려면 최량 부분 집합 회귀 분석 및 단계적 회귀 분석 사용(으)로 이동하십시오.

Minitab에서 모형을 적합하기 위해 사용하는 방법을 지정합니다.
  • 없음: : 대화 상자에서 지정하는 모든 항을 사용하여 모형을 적합합니다. 모형 대화 상자
  • 정보 기준 전진 선택법: 전진 정보 기준 절차에서는 각 단계에서 p-값이 가장 낮은 항을 모형에 추가합니다. 분석에 대한 설정으로 비계층적 항을 고려할 수 있지만 각 모형이 계층적이어야 하는 경우 추가 항이 1단계로 모형을 입력할 수 있습니다. Minitab은 각 단계의 정보 기준을 계산합니다. 대부분의 경우 절차는 다음 조건 중 하나가 발생할 때까지 계속됩니다.
    • 절차는 8개의 연속 단계에 대한 새로운 최소 기준을 찾지 못합니다.
    • 이 절차는 전체 모형을 적합시킵니다.
    • 이 절차는 오차에 대해 1도의 자유도를 남기는 모형을 적합시킵니다.
    각 단계에서 계층적 모형이 필요하고 한 번에 한 항만 입력하도록 허용하는 절차에 대한 설정을 지정하면, 전체 모형을 적합시키거나 오차에 대한 자유도 1도를 남기는 모형을 적합시킬 때까지 절차가 계속됩니다. Minitab에서 AICc 또는 BIC 등 선택된 정보 기준의 값이 가장 작은 모형에 대한 분석 결과를 표시합니다.
  • 단계적 회귀 분석: 이 방법은 빈 모형으로 시작하거나 초기 모형 또는 모든 모형에 포함하도록 지정한 항을 포함합니다. 그런 다음 Minitab은 각 단계에 대한 항을 추가하거나 제거합니다. 초기 모형에 포함하거나 모든 모형에 포함할 항을 지정할 수 있습니다. 모형에 없는 모든 변수의 p-값이 지정된 값보다 큰 경우 Minitab이 중지됩니다. 입력할 변수에 대한 알파 모형에 없는 모든 변수의 p-값이 지정된 값보다 작거나 같은 경우 Minitab이 중지됩니다. 제거할 변수에 대한 알파
  • 전진 선택: 이 방법은 빈 모형으로 시작하거나 초기 모형 또는 모든 모형에 포함하도록 지정한 항을 포함합니다. 그런 다음 Minitab이 각 단계에서 가장 유의한 항을 추가합니다. 모형에 없는 모든 변수의 p-값이 지정된 값보다 큰 경우 Minitab이 중지됩니다. 입력할 변수에 대한 알파
  • 후진 제거: 이 방법은 모형의 모든 잠재 항으로 시작하고 각 단계에 대한 가장 중요한 항을 제거합니다. 모형에 없는 모든 변수의 p-값이 지정된 값보다 작거나 같은 경우 Minitab이 중지됩니다. 제거할 변수에 대한 알파
참고

최종 모형에 포함되는 항은 모형에 대한 계층 구조 제한에 따라 달라질 수 있습니다. 자세한 내용은 아래 계층 구조의 항목을 참조하십시오.

잠재 항

절차에서 평가하는 항의 집합을 표시합니다. 리스트에서 항 옆의 지시자(E 또는I)는 절차에서 항을 처리하는 방식을 나타냅니다. 선택하는 방법에 따라 이 리스트의 초기 설정이 결정됩니다. 아래의 두 단추를 사용하여 절차에서 항을 처리하는 방식을 수정할 수 있습니다. 이 단추를 사용하지 않으면 절차에서 항의 p-값을 기반으로 항을 모형에 추가하거나 모형에서 제거할 수 있습니다.
  • E = 모든 모형에 항 포함: 항의 p-값에 관계없이 항을 모든 모형에 포함하려면 항을 선택하고 이 단추를 클릭합니다. 이 조건을 제거하려면 해당 단추를 다시 클릭합니다.
  • I = 초기 모형에 항 포함: 항을 초기 모형에 포함하려면 항을 선택하고 이 단추를 클릭합니다. p-값이 너무 높으면 절차에서 이 항을 제거할 수 있습니다. 이 조건을 제거하려면 해당 단추를 다시 클릭합니다. 이 단추는 단계적 회귀 분석(방법)을 선택한 경우에만 사용할 수 있습니다.

기준

전진 선택에서 사용할 정보 기준을 선택합니다.

AICc와 BIC 모두 모형의 우도를 평가한 다음 모형에 항을 추가하는 데 대한 벌칙을 적용합니다. 벌칙은 모형을 표본데이터에 과다 적합하는 경향을 줄입니다. 이에 따라 일반적으로 더 잘 수행되는 모형이 생성됩니다.

일반 지침에 따라, 모수 수가 표본 크기에 비해 작은 경우 AICc보다 BIC가 각 모수의 추가에 대한 벌칙이 더 큽니다. 이러한 경우 BIC를 최소화하는 모형이 AICc를 최소화하는 모형보다 더 작은 경향이 있습니다.

선별 설계와 같은 몇 가지 일반적인 경우, 모수의 수가 일반적으로 표본 크기에 비해 큽니다. 이러한 경우 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다. 예를 들어, 13-런 확정 선별 설계의 경우 모수가 6개 이상인 모형의 집합 중에서 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다.

AICc 및 BIC에 대한 자세한 내용은 Burnham and Anderson.1

입력할 변수에 대한 알파 및 제거

입력할 변수에 대한 알파
Minitab에서 모형에 항을 입력할 수 있는지 여부를 확인하기 위해 사용하는 알파 값을 입력합니다. 단계적 회귀 또는 전진 선택(방법)을 선택할 때 이 값을 설정할 수 있습니다.
제거할 변수에 대한 알파
Minitab에서 모형에서 항을 제거할 수 있는지 여부를 확인하기 위해 사용하는 알파 값을 입력합니다. 단계적 회귀 또는 후진 제거(방법)을 선택할 때 이 값을 설정할 수 있습니다.

계층 구조

Minitab에서 단계적 절차 동안 모형 계층 구조를 적용하는 방식을 지정할 수 있습니다. 계층 구조 버튼은 모형 대화 상자에서 비계층적 모형을 지정하면 비활성화됩니다.

계층적 모형에서는 높은 차수의 항을 구성하는 모든 낮은 차수의 항이 모형에 표시됩니다. 예를 들어, 교호작용 항 A*B*C가 포함된 항은 A, B, C, A*B, A*C, B*C 항이 포함된 경우 계층적입니다.

일반 선형 모형은 변량 요인을 포함하지 않는 경우 비계층적일 수 있습니다. 일반적으로 주제 영역의 경우 저차 항을 포함하도록 제안하지 않을 경우 유의한 저차 항을 제거할 수 있습니다. 너무 많은 항을 포함하는 모형은 정확도가 떨어지므로, 새로운 관측치의 값을 예측하는 능력이 저하될 수 있습니다.

다음 정보를 참고해 보십시오.
  • 먼저 계층적 모형을 적합합니다. 나중에 유의하지 않은 항을 제거할 수 있습니다.
  • 공변량을 표준화하는 경우 계층적 모형을 적합하여 코드화되지 않은(또는 자연) 단위로 방정식을 생성합니다.
  • 모형에 범주형 변수가 포함되는 경우 최소한 범주형 항이 계층적이면 결과를 더 쉽게 해석할 수 있습니다.
계층적 모형
단계적 절차에서 계층적 모형을 생성해야 하는지 여부를 선택합니다.
  • 각 단계에서 계층적 모형이 필요함: Minitab에서는 계층 구조를 유지하는 항만 추가하거나 제거할 수 있습니다.
  • 계층적 모형으로 만들기 위해 끝에 항 추가: 처음에 Minitab은 단계적 절차의 표준 규칙을 따릅니다. 최종 단계에서 Minitab은 p-값이 입력할 변수에 대한 알파 값보다 크더라도 계층적 모형을 생성하는 항을 추가합니다. 방법이(가) 정보 기준 전진 선택법일 때 이 옵션을 선택하면 Minitab에서 오류를 표시합니다. 단계의 모형 중에서 기준을 최소화하는 계층 모형을 얻으려면 각 단계에서 계층적 모형이 필요함을(를) 선택하십시오.
  • 계층적 모형이 필요하지 않음: 최종 모형이 비계층적일 수 있습니다. Minitab은 단계적 절차의 규칙만을 기반으로 항을 추가하고 제거합니다.
다음 항에 대한 계층 구조 필요
계층적 모형이 필요한 경우 계층적이어야 하는 유형의 항을 선택합니다.
  • 모든 항: 계량형 및/또는 범주형 변수가 포함된 항이 계층적이어야 합니다.
  • 범주형 예측 변수가 있는 항: 범주형 변수가 포함된 항만 계층적이어야 합니다.
각 단계에 입력할 수 있는 항 수
각 단계에서 계층 구조가 필요한 경우 Minitab이 계층 구조를 유지하기 위해 각 단계에서 추가할 수 있는 항의 수를 선택합니다.
  • 각 단계에서 최대 1개의 항을 입력할 수 있음: 해당 항을 하나 추가해도 계층 구조가 유지되는 경우에만 모형에 고차 항을 추가할 수 있습니다. 고차 항을 구성하는 모든 저차 항은 이미 모형에 포함되어 있어야 합니다.
  • 계층 구조를 유지하기 위해 추가 항을 입력할 수 있음: 비계층적인 모형이 생성되더라도 모형에 고차 항을 추가할 수 있습니다. 그러나 p-값이 입력할 변수에 대한 알파 값보다 크더라도 계층적 모형을 생성하기 위해 필요한 항도 추가됩니다.

모형 선택 상세정보 표 표시

단계적 절차에 대해 표시할 정보를 지정합니다.
  • 방법에 대한 상세정보: 단계적 절차의 유형을 표시하고 모형에 예측 변수를 입력하거나 제거하기 위한 알파 값을 표시합니다.
  • 각 단계에 대한 자세한 내용 포함: 단계적 절차의 각 단계에 대한 계수, p-값 및 모형 요약 통계량을 표시합니다.
1 Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection을 참조하십시오. Sociological Methods & Research, 33(2), 261-304. doi:10.1177/0049124104268644
이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오