요인 설계 분석에 대한 데이터 고려사항

유효한 결과를 얻으려면 데이터를 수집하고 분석을 수행하거나 결과를 해석할 때 다음 지침을 따르십시오.

데이터에는 계량형 또는 범주형 요인이 2개 이상 포함되어 있어야 함
Minitab의 설계된 실험에는 계량형 또는 범주형 요인이 2개 이상 포함되어 있어야 합니다.
  • 하나의 범주형 요인만 있고 계량형 예측 변수가 없는 경우 일원 분산 분석을 사용할 수 있습니다.
  • 하나의 계량형 요인만 있으면 적합선 그림을 사용하십시오.
반응 변수가 계량형이어야 함
반응 변수가 범주형이면 모형이 분석의 가정을 충족하거나 데이터를 정확히 설명하거나 유용한 예측을 할 가능성이 적습니다.
측정 시스템에서 신뢰할 수 있는 반응 데이터를 생성하는지 확인

측정 시스템의 변동성이 너무 크면 실험에 중요한 효과를 찾기 위한 검정력이 결여될 수도 있습니다.

각 관측치가 다른 모든 관측치로부터 독립적이어야 함
개별 관측치가 종속되면 결과가 유효하지 않을 수도 있습니다. 관측치가 독립적인지 여부를 확인하려면 다음과 같은 점을 고려하십시오.
  • 한 관측치가 다른 관측치에 대한 정보를 제공하지 않으면 관측치가 독립적입니다.
  • 한 관측치가 다른 관측치에 대한 정보를 제공하면 관측치가 종속됩니다.
실험 런이 랜덤화되어야 함

랜덤화하면 제어되지 않는 조건으로 인해 결과가 치우칠 확률이 감소합니다. 랜덤화를 통해 재료와 조건의 내재되어 있는 변동을 추정할 수 있으므로 실험의 데이터를 근거로 올바른 통계 추론을 작성할 수 있습니다.

최적의 경험을 사용한 데이터 수집
유효한 결과를 얻으려면 다음 지침을 따르십시오.
  • 데이터가 관심 있는 모집단을 나타내는지 확인합니다.
  • 필요한 정밀도를 제공하기에 충분한 데이터를 수집합니다.
  • 데이터를 수집된 순서대로 기록합니다.
모형이 데이터를 잘 적합해야 함

모형이 데이터를 적합시키지 않으면 잘못된 결과를 얻을 수 있습니다. 결과에서 잔차 그림, 비정상적인 관측치에 대한 진단 통계량 및 모형 요약 통계량을 사용하여 모형이 데이터를 얼마나 잘 적합시키는지 확인하십시오.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오