일반 선형 모형 적합에 대한 주요 결과 해석

일반 선형 모형을 해석하려면 다음 단계를 수행하십시오. 주요 결과에는 p-값, 계수, R2 및 잔차 그림이 포함됩니다.

1단계: 반응과 항 간의 연관성이 통계적으로 유의한지 여부 확인

반응과 모형의 각 항 간의 연관성이 통계적으로 유의한지 여부를 확인하려면 항에 대한 p-값을 유의 수준과 비교하여 귀무 가설을 평가합니다. 귀무 가설은 항과 반응 간에 연관성이 없다는 것입니다. 일반적으로 0.05의 유의 수준(α 또는 알파로 표시함)이 적절합니다. 0.05의 유의 수준은 실제로 연관성이 없는데 연관성이 존재한다는 결론을 내릴 위험이 5%라는 것을 나타냅니다.
p-값 ≤ α: 연관성이 통계적으로 유의합니다.
p-값이 유의 수준보다 작거나 같으면 반응 변수와 항 간에 통계적으로 유의한 연관성이 있다는 결론을 내릴 수 있습니다.
p-값 > α: 연관성이 통계적으로 유의하지 않습니다.
p-값이 유의 수준보다 크면 반응 변수와 항 간에 통계적으로 유의한 연관성이 있다는 결론을 내릴 수 없습니다. 항 없이 모형을 다시 적합시킬 수도 있습니다.
반응과 통계적으로 유의한 연관성이 없는 예측 변수가 여러 개 있는 경우 한 번에 하나씩 항을 줄여 모형을 축소할 수 있습니다. 모형에서 항을 제거하는 방법은 모형 축소에서 확인하십시오.
모형 항이 통계적으로 유의하면 해석은 항의 유형에 따라 다릅니다. 해석은 다음과 같습니다.
  • 고정 요인이 유의하면 일부 수준 평균이 같지 않다는 결론을 내릴 수 있습니다.
  • 변량 요인이 유의하면 요인이 반응의 변동에 기여한다는 결론을 내릴 수 있습니다.
  • 교호작용 항이 유의하면 요인과 반응의 관계가 항의 다른 요인에 따라 다릅니다. 이 경우에는 교호작용 효과를 고려하지 않고 주효과를 해석해서는 안 됩니다.
  • 공변량이 통계적으로 유의하면 공변량 값의 변화가 평균 반응 값의 변화와 연관성이 있다는 결론을 내릴 수 있습니다.
  • 다항식 항이 유의하면 데이터에 곡면성이 포함되어 있다는 결론을 내릴 수 있습니다.
계수 항 계수 SE 계수 T-값 P-값 VIF 상수 -4969 191 -25.97 0.000 온도 83.87 3.13 26.82 0.000 301.00 유리종류 1 1323 271 4.89 0.000 3604.00 2 1554 271 5.74 0.000 3604.00 온도*온도 -0.2852 0.0125 -22.83 0.000 301.00 온도*유리종류 1 -24.40 4.42 -5.52 0.000 15451.33 2 -27.87 4.42 -6.30 0.000 15451.33 온도*온도*유리종류 1 0.1124 0.0177 6.36 0.000 4354.00 2 0.1220 0.0177 6.91 0.000 4354.00
주요 결과: p-값, 계수

이 결과에서는 유리 유형과 온도의 주효과가 유의 수준 0.05에서 통계적으로 유의합니다. 이들 변수의 변화가 반응 변수의 변화와 연관되어 있다는 결론을 내릴 수 있습니다.

결과에는 실험의 세 가지 유리 유형 중에서 두 가지 유형에 대한 계수가 표시됩니다. 기본적으로 Minitab에서는 완벽한 다중 공선성을 피하기 위해 한 가지 요인 수준을 제거합니다. 분석에서 −1, 0, +1 코드화 방법을 사용하기 때문에 주효과에 대한 계수가 각 수준 평균과 전체 평균 간의 차이를 나타냅니다. 예를 들어, 유리 유형 1은 전체 평균보다 큰 1323 단위의 출력 신호와 연관되어 있습니다.

온도는 이 모형에서 공변량입니다. 주효과에 대한 계수는 모형의 다른 항이 상수로 고정된 상태에서 공변량의 한 단위 증가에 대한 평균 반응의 변화를 나타냅니다. 온도가 1도 높아질 때마다 평균 출력 신호는 83.87 단위 증가합니다.

유리 유형과 온도 모두 통계적으로 유의한 고차 항에 포함됩니다.

유리 유형과 온도에 대한 2차 및 3차 교호작용은 통계적으로 유의합니다. 이러한 교호작용은 각 변수와 반응 간의 관계가 다른 변수의 값에 종속된다는 것을 나타냅니다. 예를 들어, 유리 유형의 출력 신호에 대한 효과는 온도에 따라 달라집니다.

다항식 항인 온도*온도는 온도와 출력 신호 간 관계의 곡면성이 통계적으로 유의하다는 것을 나타냅니다.

교호작용 효과와 곡면성을 고려하지 않고 주효과를 해석해서는 안 됩니다. 모형의 주효과, 교호작용 효과 및 곡면성에 대해 자세히 알려면 요인 그림반응 최적화 도구로 이동하십시오.

2단계: 모형이 데이터를 얼마나 잘 적합시키는지 확인

모형이 데이터를 얼마나 잘 적합시키는지 확인하려면 모형 요약 표의 적합도 통계량을 조사하십시오.

S

모형이 반응을 얼마나 잘 설명하는지 평가하려면 S를 사용합니다. 상수가 없는 모형의 적합치를 비교하려면 R2 통계량 대신 S를 사용합니다.

S는 반응 변수 단위로 측정되며, 데이터 값의 적합치로부터의 거리의 표준 편차를 나타냅니다. S의 값이 낮을수록 모형이 반응을 더 잘 설명합니다. 그러나 낮은 S 값 자체는 모형이 모형 가정을 충족한다는 것을 나타내지 않습니다. 가정을 확인하려면 잔차 그림을 확인해야 합니다.

R-제곱

R2 값이 클수록 모형이 데이터를 더 잘 적합시킵니다. R2은 항상 0%에서 100% 사이입니다.

모형에 예측 변수를 추가하면 R2은 항상 증가합니다. 예를 들어, 최량 예측 변수가 5개인 모형은 최량 예측 변수가 4개인 모형보다 항상 R2 값이 큽니다. 따라서 R2은 같은 크기의 모형을 비교할 때 가장 유용합니다.

R-제곱(수정)

예측 변수 수가 다른 여러 모형을 비교하려면 수정 R2을 사용하십시오. 모형에 예측 변수를 추가하면, 모형이 실제로 개선되지 않더라도 R2은 항상 증가합니다. 수정 R2 값은 모형의 예측 변수 수에 통합되어 올바른 모형을 선택하는 데 도움이 됩니다.

R-제곱(예측)

모형의 새 관측치에 대한 반응을 얼마나 잘 예측하는지 확인하려면 예측 R2을 사용합니다. 모형의 예측 R2 값이 클수록 예측 능력이 더 좋습니다.

예측 R2이 R2보다 상당히 작으면 모형이 과다 적합하다는 것을 나타낼 수도 있습니다. 모집단에서 중요하지 않은 효과에 대한 항을 추가할 경우 과다 적합 모형이 발생할 수 있습니다. 모형이 표본 데이터에 따라 조정되므로, 모집단에 대해 예측 시 유용하지 않을 수도 있습니다.

예측 R2은 또한 모형 계산에 포함되지 않은 관측치를 사용하여 계산되므로, 모형을 비교할 때 수정 R2보다 유용할 수 있습니다.

R2 값을 해석하는 경우 다음과 같은 점을 고려하십시오.
  • 작은 표본은 반응과 예측 변수 간 관계의 강도에 대한 정확한 추정치를 제공하지 않습니다. 더 정확한 R2이 필요하면 더 큰 표본을 사용해야 합니다(일반적으로 40 이상).

  • R2은 모형이 데이터를 얼마나 잘 적합시키는 지에 대한 하나의 측도에 지나지 않습니다. 모형의 R2이 높더라도 해당 모형이 모형 가정을 충족하는지 확인하려면 잔차 그림을 확인해야 합니다.

모형 요약 S R-제곱 R-제곱(수정) R-제곱(예측) 19.1185 99.73% 99.61% 99.39%
주요 결과: S, R-제곱, R-제곱(수정), R-제곱(예측)

이 결과에서는 모형이 면-판 유리 표본의 출력 신호 변동의 99.73%를 설명합니다. 이 데이터의 경우 R2 값은 모형이 데이터에 좋은 적합치를 제공한다는 것을 나타냅니다. 다른 예측 변수를 사용하여 추가 모형을 적합하는 경우 수정 R2 값과 예측 R2 값을 비교하여 모형이 데이터를 얼마나 잘 적합하는지 비교하십시오.

3단계: 모형이 분석의 가정을 충족하는지 여부 확인

모형이 적절하고 분석의 가정을 충족하는지 여부를 확인하려면 잔차 그림을 사용합니다. 가정이 충족되지 않으면 모형이 데이터에 적합하지 않은 것이므로 결과를 해석할 때 주의해야 합니다.

잔차 그림의 패턴을 처리하는 방법에 대한 자세한 내용을 보려면 일반 선형 모형 적합의 잔차 그림으로 이동하여 페이지 상단의 리스트에서 잔차 그림의 이름을 클릭하십시오.

잔차 대 적합치 그림

잔차가 랜덤하게 분포되어 있고 잔차의 분산이 일정하다는 가정을 확인하려면 잔차 대 적합치 그림을 사용하십시오. 이상적으로는 점들이 식별 가능한 패턴 없이 0의 양쪽에 랜덤하게 분포해야 합니다.

다음 표의 패턴들은 모형이 모형 가설을 충족하지 않음을 나타낼 수 있습니다.
패턴 패턴이 나타내는 내용
적합치에 대해 잔차가 부채꼴 모양으로 흩어져 있거나 고르지 않게 퍼져 있음 일정하지 않은 분산
곡선 고차 항 누락
한 점이 0에서 멀리 떨어져 있음 특이치
다른 점에서 x 방향으로 멀리 떨어져 있는 점 영향력 있는 점
이 잔차 대 적합치 그림에서는 데이터가 0 주위에 랜덤하게 분포하는 것으로 보입니다. 잔차의 값이 적합치에 따라 달라진다는 증거가 없습니다.

잔차 대 순서 그림

잔차가 서로 독립적이라는 가정을 확인하려면 잔차 대 순서 그림을 사용하십시오. 독립 잔차는 시간순으로 표시될 때 아무런 추세나 패턴을 보이지 않습니다. 점들의 패턴은 서로 가까이 있는 잔차가 상관되어 있으며, 따라서 독립적이 아닐 수도 있음을 나타냅니다. 이상적으로는 그림의 잔차들이 중심선 주위에 랜덤하게 분포해야 합니다.
패턴이 있으면 원인을 조사하십시오. 다음 유형의 패턴은 잔차가 종속적이라는 것을 나타낼 수도 있습니다.
추세
이동
주기
이 잔차 대 순서 그림에서는 잔차가 중심선 주위에 랜덤하게 위치한 것으로 보입니다. 잔차가 독립적이지 않다는 증거가 없습니다.

잔차 정규 확률도

잔차가 정규 분포를 따른다는 가정을 확인하려면 잔차의 정규 확률도를 사용하십시오. 잔차의 정규 확률도는 대략 직선을 따라야 합니다.

다음 표의 패턴들은 모형이 모형 가설을 충족하지 않음을 나타낼 수 있습니다.
패턴 패턴이 나타내는 내용
직선이 아님 비정규성
선에서 멀리 떨어져 있는 점 특이치
기울기 변화 식별되지 않은 변수
이 정규 확률도에서는 점들이 일반적으로 거의 직선을 이룹니다. 비정규성, 특이치 또는 식별되지 않은 변수가 있다는 증거가 없습니다.
이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오