Maximum likelihood estimates of the parameters in the distribution are calculated by maximizing the likelihood function with respect to the parameters. For a given data set, the maximum likelihood estimates are the most likely values for the distribution parameters.
The Newton-Raphson algorithm is used to calculate maximum likelihood estimates of the distribution parameters. The Newton-Raphson algorithm is an iterative numerical method for calculating the maximum of a function. 1
Minitab calculates the parameter estimates using the maximum likelihood method for all the distributions except the lognormal distribution. For the lognormal distribution, Minitab calculates unbiased parameter estimates.
![]() |
|
CDF |
![]() |
Mean |
![]() |
Stdev |
![]() |
Term | Description |
---|---|
μ | Scale parameter |
σ | Shape parameter |
![]() |
|
CDF |
![]() |
Mean | αβ |
Stdev | αβ2 |
Term | Description |
---|---|
α | Shape parameter |
β | Scale parameter |
![]() |
|
CDF |
![]() |
Mean | θ |
Stdev | θ |
Term | Description |
---|---|
θ | Scale parameter |
![]() |
|
CDF |
![]() |
Mean |
![]() |
Stdev |
![]() |
Term | Description |
---|---|
μ | Location parameter |
σ | Scale parameter |
γ | Euler's constant (approximately equals 0.5772) |
![]() |
|
CDF |
![]() |
Mean |
![]() |
Stdev |
![]() |
Term | Description |
---|---|
α | Scale parameter |
β | Shape parameter |
![]() |
|
CDF |
![]() |
Mean |
![]() |
Stdev |
![]() |
Term | Description |
---|---|
μ | Location parameter |
σ | Scale parameter |
γ | Euler's constant (approximately equals 0.5772) |
![]() |
|
CDF |
![]() |
Mean | μ |
Stdev |
![]() |
Term | Description |
---|---|
μ | Location parameter |
σ | Scale parameter |
![]() |
|
CDF |
![]() |
Mean |
![]() |
Stdev |
![]() |
Term | Description |
---|---|
μ | Location parameter |
σ | Scale parameter |