一元配置分散分析の分散分析表

分散分析表における統計量の定義と解釈について解説します。

Welch検定

デフォルトの一元配置分散分析と違い、Welchの検定では全母集団の分散が等しいと仮定していません。MinitabにおいてWelchの一元配置分散分析を行う場合はオプションサブダイアログボックスの等分散を仮定を外してください。

解釈

Welch検定の結果の解釈方法については「p値」を参照してください。

自由度(DF)

総自由度は、データに含まれる情報量のことです。この情報から、未知の母集団のパラメータの値を分析し推定します。総自由度は、サンプルに含まれる観測値の数によって決定されます。項の自由度は、その項が使う情報量を示します。サンプルサイズを大きくすると、母集団に関して提供される情報が増え、総自由度が高くなります。モデルに含める項の数を増やすと情報量が増え、パラメータ推定値の変動性を推定するのに使える自由度が低くなります。

2つの条件が一致すると、Minitabは誤差の自由度を分割します。1つ目の条件は、現在のモデルには含まれていない、データと適合できる項があることです。たとえば、3つ以上の異なる値を持つ連続予測変数がある場合、その予測変数に対して2次項を推定できます。モデルが2次項を含まない場合、データと適合できる項はモデルに含まれていないので、この条件は満たされていることになります。

2つ目の条件は、データに反復が含まれていることです。反復とは、各予測変数の値が同じ観測値のことを言います。たとえば、圧力5、温度25の観測値が3つある場合、それら3つの観測値は反復となります。

2つの条件が一致すると、誤差の自由度の2つの部分は不適合かつ純誤差となります。不適合の自由度は、モデル形式が適切かどうかの検定を可能にします。不適合検定では、不適合に対する自由度が使用されます。純粋誤差の自由度が大きいほど、不適合検定の検定力は高くなります。

DF Num

Welch検定の分散分析においては、Minitabでは分子に自由度を使って、観測されたF値と同等以上の極端なF値が得られる確率を計算します。

解釈

Minitabは、F値を使ってp値を計算します。一般的に、解釈が容易なp値を評価してください。

DF Denom (分母)

MinitabではWelch検定の分散分析においては、観測されたF値と同等以上の極端なF値が得られる確率を計算するにあたり、分母に自由度を使います。

解釈

Minitabは、F値を用いてp値を計算します。一般的に、解釈が容易なのでp値を評価してください。

逐次平方和(Seq SS)

逐次平方和は、モデル内の異なる成分の変動の測度です。調整平方和と異なり、逐次平方和は項がモデルに追加された順序に依存します。分散分析表では、逐次平方和は、異なる要因による変動を説明する成分に分けられます。

逐次平方和項
項の逐次平方和は、前に追加された項からは説明されない項によって説明できる変動の固有の部分です。モデルに順次追加される各項によって説明される応答データの変動量を数値化します。
逐次誤差平方和
誤差平方和は残差二乗和です。予測変数によって説明されないデータの変動を数値化します。
全体逐次平方和
全体平方和は、項の平方和と誤差の平方和の合計です。データの変動全体を定量化します。

解釈

Minitabでは、逐次平方和を使用して項のp値を計算します。また、平方和を使用してR2の統計量も計算します。通常は、平方和ではなく、p値とR2統計量を解釈します。

寄与度

寄与度は、分散分析表の各要因が合計逐次平方和(Seq SS)に寄与する割合を示しています。

解釈

割合が高いほど、要因がより応答の変動の原因になっていることを示しています。

調整平方和

調整平方和は、モデル内の異なる成分の変動の測度です。モデル内の予測変数の次数は、調整平方和の計算に影響を及ぼしません。分散分析表では、調整平方和は、異なる要因による変動を説明する成分に分けられます。

調整平方和項
項の調整平方和は、他の項だけを持つモデルと比較した場合の回帰平方和の増加を表します。モデルに含まれる各項によって説明される応答データの変動量を数値化します。
調整誤差平方和
誤差平方和は残差二乗和です。予測変数によって説明されないデータの変動を数値化します。
調整全体平方和
全体平方和は、項の平方和と誤差の平方和の合計です。データ内の変動の合計を数値化します。

解釈

Minitabでは、調整平方和を使用して項のp値を計算します。また、平方和を使用してR2の統計量も計算します。通常は、平方和ではなく、p値とR2統計量を解釈します。

調整平均平方

調整平均平方は、項やモデルによってどれだけの変動を説明できるかを測定するものです。このとき、その他のすべての項は、入力された順序にかかわらずモデル内に含まれると仮定します。調整平方和と異なり、調整平均平方では、自由度が考慮されます。

調整平均平方誤差(平均平方誤差またはs2)は適合値からの分散です。

解釈

Minitabでは、調整平均平方を使用して項のp値を計算します。また、調整平均平方を使用して調整済みR2の統計量も計算します。通常は、調整平均平方ではなく、p値と調整済みR2統計量を解釈します。

F値

F値は分散分析表の各項に表示されます。
モデルまたは項におけるF値
F値は項が応答に関連付けられているかを判断する検定統計量です。
不適合度検定におけるF値 (不適合度 Lack of fit)
F値は検定統計量であり、現行モデルにおいて予測変数が含まれる高次項をが損しているかを判断します。

解釈

F値を使用してMinitabで計算されるp値に基づいて、項およびモデルの統計的有意性に関する決定を下すことができます。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。

F値の大きさが十分であれば、項やモデルが有意であることを示します。

F値から帰無仮説を棄却するかどうかを判断するには、F値と棄却限界値と比較します。Minitabで棄却限界値を計算することも、ほとんどの統計に関する書籍に掲載されているF分布表で棄却値を見つけることもできます。Minitabでの棄却限界値の計算方法については、逆累積分布関数(ICDF)の使用で「逆累積分布関数で棄却限界値を計算する」をクリックしてください。

p値

p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。

解釈

分散分析出力のp値を使用して、いくつかの平均値の間の差が統計的に有意かどうかを判定します。

平均間の差のいずれかが統計的に有意かどうかを判断するために、p値を有意水準と比較し、帰無仮説を評価します。帰無仮説では母集団の平均値がすべて等しくなります。通常は、有意水準(αまたはアルファとも呼ばれる)として0.05が適切です。0.05の有意水準は、実際には差が存在しない場合に、差が存在すると結論付けてしまうリスクが5%であるということを示します。
p値 ≤ α:いくつかの平均値の間の差は統計的に有意です
p値が有意水準以下の場合は、帰無仮説を棄却し、母集団平均のすべてが等しいわけではないと結論付けます。専門知識を使用して、この差が実質的に有意かどうかを判定します。詳細は統計的有意性と実質的有意性を参照してください。
p値 > α:平均値の間の差は統計的に有意ではありません
p値が有意水準より大きい場合、母集団の平均がすべて等しいという帰無仮説を棄却するのに十分な証拠を得られません。検定の検出力が、実質的に有意な差を検出するのに十分であることを検証します。詳細は、仮説検定の検出力を高めるを参照してください。
本サイトを使用すると、分析およびコンテンツのカスタマイズのためにクッキーが使用されることに同意したことになります。  当社のプライバシーポリシーをご確認ください