バランス型分散分析(ANOVA)のデータに関する考慮事項

有効な結果が確実に得られるようにするため、データの収集、分析の実行、および結果の解釈時には、次のガイドラインを考慮してください。

データにはカテゴリ因子のみが含まれている

計画に共変量が含まれる場合は、一般線形モデルを適合を使用します。

カテゴリ因子は、交差して枝分かれした因子と、固定されたランダム因子にすることができます。

因子に関する詳細は、因子と因子水準, 因子、交差因子、枝分かれ因子とは、および固定因子と変量因子の違いを参照してください。

計画は、一元配置計画があるのでない限り、バランス型にする必要がある
バランス型計画には、処理の組み合わせごとに同じ数の観測値があります。

バランス型データの条件は、枝分かれ因子にも拡張されます。Aに3つの水準があり、BがAの中で枝分かれしている場合を考えてみます。Aの最初の水準の中でBに4つの水準がある場合、Aの2番目の水準と3番目の水準でもBは4つの水準を持つ必要があります。Minitabでは、アンバランス型の枝分かれがある場合はメッセージが表示されます。データがバランス型であるという条件は、欠損データが省略されたあとで保持される必要があります。

計画がバランス型ではない場合は、一般線形モデルを適合を使用します。

バランス型計画に関する詳細については、バランス型計画とアンバランス型計画を参照してください。

枝分かれ因子では、同じ見出しセットを使用する必要がある
Aの各水準にあるBの4つの水準は、同じ見出しを使って示されなければなりません。したがって、Bの4つの水準は、Aの水準1で(1 2 3 4)、Aの水準2で(5 6 7 8)、Aの水準3で(9 10 11 12)となることはありません。
応答変数は連続量である
応答変数がカテゴリの場合、モデルが分析の前提条件を満たしたり、データを正確に表したり、または有効な予測を行ったりする確率は低くなります。
  • 応答変数に合格や不合格などの2種類のカテゴリが含まれる場合は、2値ロジスティックモデルを適合を使用します。
  • 応答変数に、「強く反対」「反対」「どちらでもない」「同意」「強く同意」などの自然律に従うカテゴリが3種類以上含まれている場合は、順位ロジスティック回帰を使用します。
  • 応答変数に、傷、へこみ、および裂け目などの自然律に従わないカテゴリが3種類以上含まれている場合は、名義ロジスティック回帰を使用します。
  • 応答変数で欠陥の数などの出現数を数える場合は、適合ポアソンモデルを使用します。
各観測値は他のすべての観測値から独立している
観測値が従属している場合、結果は有効ではない可能性があります。以下の点を考慮して、観測値が独立しているかどうか判断します。
  • ある観測値に別の観測値の値に関する情報が含まれていない場合、それらの観測値は独立しています。
  • ある観測値に別の観測値に関する情報が含まれている場合、それらの観測値は従属しています。
サンプルデータはランダムに選択される

ランダムサンプルを使用して母集団についての一般化または推定を行います。データがランダムに収集されていなければ、結果は母集団とならない可能性があります。

ベストプラクティスを使用してデータを収集する
結果が確実に有効になるようにするため、次のガイドラインについて考慮します。
  • データが対象の母集団を表すことを確認します。
  • 必要な精度を達成するために十分なデータを収集します。
  • 可能な限り正確かつ高精度に変数を測定します。
  • データを収集した順序で記録します。
モデルがデータに良好に適合している

モデルがデータに適合しない場合、結果は、誤った認識を与える可能性があります。出力において、残差プロットおよびモデル要約統計量を使用して、モデルのデータへの適合度を判断します。

本サイトを使用すると、分析およびコンテンツのカスタマイズのためにクッキーが使用されることに同意したことになります。  当社のプライバシーポリシーをご確認ください