d2(N) is the expected value of the range of N observations from a normal population with standard deviation = 1. Thus, if r is the range of a sample of N observations from a normal distribution with standard deviation = σ, then E(r) = d2(N)σ.
d3(N) is the standard deviation of the range of N observations from a normal population with σ = 1. Thus, if r is the range of a sample of N observations from a normal distribution with standard deviation = σ, then stdev(r) = d3(N)σ.
Use the following table to find an unbiasing constant for a given value, N. (To determine the value of N, consult the formula for the statistic of interest.)



| N | d2(N) | d3(N) | d4(N) | 
|---|---|---|---|
| 2 | 1.128 | 0.8525 | 0.954 | 
| 3 | 1.693 | 0.8884 | 1.588 | 
| 4 | 2.059 | 0.8798 | 1.978 | 
| 5 | 2.326 | 0.8641 | 2.257 | 
| 6 | 2.534 | 0.8480 | 2.472 | 
| 7 | 2.704 | 0.8332 | 2.645 | 
| 8 | 2.847 | 0.8198 | 2.791 | 
| 9 | 2.970 | 0.8078 | 2.915 | 
| 10 | 3.078 | 0.7971 | 3.024 | 
| 11 | 3.173 | 0.7873 | 3.121 | 
| 12 | 3.258 | 0.7785 | 3.207 | 
| 13 | 3.336 | 0.7704 | 3.285 | 
| 14 | 3.407 | 0.7630 | 3.356 | 
| 15 | 3.472 | 0.7562 | 3.422 | 
| 16 | 3.532 | 0.7499 | 3.482 | 
| 17 | 3.588 | 0.7441 | 3.538 | 
| 18 | 3.640 | 0.7386 | 3.591 | 
| 19 | 3.689 | 0.7335 | 3.640 | 
| 20 | 3.735 | 0.7287 | 3.686 | 
| 21 | 3.778 | 0.7242 | 3.730 | 
| 22 | 3.819 | 0.7199 | 3.771 | 
| 23 | 3.858 | 0.7159 | 3.811 | 
| 24 | 3.895 | 0.7121 | 3.847 | 
| 25 | 3.931 | 0.7084 | 3.883 | 
| N | d2(N) | 
|---|---|
| 26 | 3.964 | 
| 27 | 3.997 | 
| 28 | 4.027 | 
| 29 | 4.057 | 
| 30 | 4.086 | 
| 31 | 4.113 | 
| 32 | 4.139 | 
| 33 | 4.165 | 
| 34 | 4.189 | 
| 35 | 4.213 | 
| 36 | 4.236 | 
| 37 | 4.259 | 
| 38 | 4.280 | 
| 39 | 4.301 | 
| 40 | 4.322 | 
| 41 | 4.341 | 
| 42 | 4.361 | 
| 43 | 4.379 | 
| 44 | 4.398 | 
| 45 | 4.415 | 
| 46 | 4.433 | 
| 47 | 4.450 | 
| 48 | 4.466 | 
| 49 | 4.482 | 
| 50 | 4.498 |