Statistiques récapitulatives du modèle pour la fonction Droite d'ajustement binaire

Obtenez des définitions et bénéficiez de conseils en matière d'interprétation pour chaque statistique fournie dans le tableau récapitulatif du modèle.

R carré de la somme des carrés d'écart

Le R2 de la somme des carrés d'écart est généralement considéré comme la proportion de la somme totale des carrés des écarts de la variable de réponse que le modèle explique.

Interprétation

Plus le R2 de la somme des carrés d'écart est élevé, plus le modèle est ajusté à vos données. Le R2 de la somme des carrés d'écart est toujours compris entre 0 et 100 %.

Le R2 de la somme des carrés d'écart augmente toujours lorsque vous ajoutez des termes à un modèle. Par exemple, le meilleur modèle à 5 termes aura toujours une valeur R2 au moins aussi élevée que celle du meilleur modèle à 4 termes. Par conséquent, le R2 de la somme des carrés d'écart est surtout utile pour comparer des modèles de même taille.

Les statistiques d'adéquation de l'ajustement ne sont qu'un des types de mesures permettant d'évaluer l'ajustement du modèle. Même si un modèle présente une valeur souhaitée, vous devez consulter les graphiques des valeurs résiduelles et les tests d'adéquation de l'ajustement pour évaluer l'ajustement du modèle aux données.

Vous pouvez utiliser une droite d'ajustement pour illustrer graphiquement différentes valeurs de R2 de la somme des carrés d'écart. Le premier diagramme illustre un modèle qui explique environ 96 % de la somme des carrés d'écart de la réponse. Le second diagramme illustre un modèle qui explique environ 60 % de la somme des carrés d'écart de la réponse. Plus un modèle explique la somme des carrés d'écart, plus les points de données sont proches de la courbe. En théorie, si un modèle pouvait expliquer 100 % de la somme des carrés d'écart, les valeurs ajustées seraient toujours égales aux valeurs observées et tous les points de données se situeraient sur la courbe.

La disposition des données a un impact sur le R2 de la somme des carrés d'écart. Le R2 de la somme des carrés d'écart est généralement plus élevé pour des données avec plusieurs essais par ligne que pour des données avec un seul essai par ligne. Les R2 de la somme des carrés d'écart sont comparables uniquement entre des modèles qui utilisent le même format de données. Pour plus d'informations, reportez-vous à la rubrique Influence du format des données sur l'ajustement dans la régression logistique binaire.

R carré (ajust) de la somme des carrés d'écart

Le R2 ajusté de la somme des carrés d'écart est la proportion de la somme des carrés d'écart de la réponse qui est expliquée par le modèle, ajustée au nombre de prédicteurs du modèle par rapport au nombre d'observations.

Interprétation

Pour comparer des modèles n'ayant pas le même nombre de termes, utilisez le R2 ajusté de la somme des carrés d'écart. Celui-ci augmente toujours lorsque vous ajoutez un terme au modèle. Le R2 ajusté de la somme des carrés d'écart intègre le nombre de termes dans le modèle pour vous aider à choisir le modèle correct.

Par exemple, vous travaillez pour un fabricant de pommes chips qui étudie les facteurs influant sur le pourcentage de chips brisées. Vous obtenez les résultats suivants lorsque vous ajoutez les prédicteurs :
Etape % de pomme de terre Vitesse de refroidissement Température de cuisson R2 de la somme des carrés d'écart R2 ajusté de la somme des carrés d'écart Valeur de p
1 X     52 % 51 % 0,000
2 X X   63 % 62 % 0,000
3 X X X 65 % 62 % 0,000

La première étape génère un modèle de régression statistiquement significatif. La deuxième étape, qui ajoute la vitesse de refroidissement au modèle, augmente le R2 ajusté de la somme des carrés d'écart, ce qui indique que la vitesse de refroidissement améliore le modèle. La troisième étape, qui ajoute la température de cuisson au modèle, augmente le R2 de la somme des carrés d'écart, mais pas le R2 ajusté de la somme des carrés d'écart. Ces résultats indiquent que la température de cuisson n'améliore pas le modèle. Selon ces résultats, vous devriez supprimer la température de cuisson du modèle.

La disposition des données a une incidence sur le R2 ajusté de la somme des carrés d'écart. Pour les mêmes données, le R2 ajusté de la somme des carrés d'écart est généralement plus élevé pour des données avec plusieurs essais par ligne que pour des données avec un seul essai par ligne. Utilisez le R2 ajusté de la somme des carrés d'écart uniquement pour comparer l'ajustement des modèles ayant le même format de données. Pour plus d'informations, reportez-vous à Influence du format des données sur l'ajustement dans la régression logistique binaire.

AIC, AICc et BIC

Le critère d'information d'Akaike (AIC), le critère d'information d'Akaike corrigé (AICc) et le critère d'information bayésien (BIC) sont des mesures de la qualité relative d'un modèle qui rend compte de l'ajustement du modèle et du nombre de termes qu'il contient.

Interprétation

Pour la fonction Droite d'ajustement binaire, vous pouvez utiliser les critères d'information pour comparer l'ajustement de plusieurs fonctions de liaison ou de différents prédicteurs. Les valeurs faibles sont les valeurs souhaitables. Cela dit, le modèle qui présente les valeurs les plus faibles n'est pas forcément bien ajusté aux données. Vous devez aussi utiliser les diagrammes de test et les graphiques des valeurs résiduelles pour évaluer l'ajustement du modèle aux données.

En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique