Interprétation de toutes les statistiques pour la fonction 1 proportion

Obtenez des définitions et bénéficiez de conseils en matière d'interprétation pour chaque statistique fournie avec l'analyse à 1 proportion.

Hypothèse nulle et hypothèse alternative

Les hypothèses nulle et alternative sont deux déclarations s'excluant mutuellement sur une population. Un test d'hypothèse utilise des données échantillons pour déterminer si l'hypothèse nulle peut être rejetée.
Hypothèse nulle
L'hypothèse nulle affirme qu'un paramètre de la population (la moyenne, l'écart type, etc.) est égal à une valeur hypothétisée. L'hypothèse nulle est souvent une déclaration initiale basée sur des analyses précédentes ou des connaissances spécialisées.
Hypothèse alternative
L'hypothèse alternative affirme qu'un paramètre de la population est plus petit, plus grand ou différent de la valeur hypothétisée dans l'hypothèse nulle. L'hypothèse alternative est celle que vous pensez être vraie ou que vous espérez démontrer.

Dans les résultats, les hypothèses nulle et alternative vous permettent de vérifier que vous avez saisi une valeur correcte pour la proportion hypothétisée.

Evénement

L'événement est la valeur de l'échantillon qui représente une réussite. Minitab utilise le nombre d'événements pour calculer la proportion de l'échantillon, qui est une estimation de la proportion d'une population. Vous pouvez changer la valeur utilisée par Minitab en tant qu'événement en modifiant l'ordre des valeurs. Pour plus d'informations, reportez-vous à la rubrique Modification de l'ordre d'affichage des valeurs de texte dans les résultats de Minitab.

N

L'effectif de l'échantillon (N) est le nombre d'observations total de l'échantillon.

Interprétation

L'effectif de l'échantillon a une influence sur l'intervalle de confiance et la puissance du test.

En général, plus l'échantillon est grand, plus l'intervalle de confiance est étroit. En outre, un effectif d'échantillon plus grand donne au test plus de puissance pour détecter une différence. Pour plus d'informations, reportez-vous à la rubrique Qu'est-ce que la puissance ?.

Valeur de p d'échantillon

La proportion de l'échantillon est égale au nombre d'événements divisé par l'effectif de l'échantillon (N).

Interprétation

La proportion de l'échantillon est une estimation de la proportion de la population.

La proportion étant calculée à partir des données d'échantillon et non de l'ensemble de la population, il est peu probable que la proportion de l'échantillon soit égale à celle de la population. Pour mieux estimer la proportion de la population, utilisez l'intervalle de confiance.

Bornes et intervalle de confiance (IC)

L'intervalle de confiance fournit une étendue de valeurs probables pour la proportion de la population. Les échantillons étant aléatoires, il est peu probable que deux échantillons d'une population donnent des intervalles de confiance identiques. Toutefois, si vous répétiez l'échantillonnage de nombreuses fois, un certain pourcentage des intervalles de confiance ou bornes obtenus contiendrait la proportion de population inconnue. Le pourcentage de ces intervalles de confiance ou bornes contenant la proportion est le niveau de confiance de l'intervalle. Par exemple, un niveau de confiance de 95 % indique que, sur 100 échantillons pris de façon aléatoire parmi la population, environ 95 de ces échantillons devraient produire des intervalles contenant la proportion de la population.

Une borne supérieure définit une valeur à laquelle la proportion de la population est susceptible d'être inférieure. Une borne inférieure définit une valeur à laquelle la proportion de la population est susceptible d'être supérieure.

L'intervalle de confiance vous aide à évaluer la signification pratique de vos résultats. Utilisez vos connaissances spécialisées pour déterminer si l'intervalle de confiance comporte des valeurs ayant une signification pratique pour votre situation. Si l'intervalle est trop grand pour être utile, vous devez sans doute augmenter votre effectif d'échantillon. Pour plus d'informations, reportez-vous à la rubrique Obtenir un intervalle de confiance plus précis.

Statistiques descriptives N Evénement P échantillon IC à 95% pour p 1000 87 0,087000 (0,070268; 0,106208)

Dans ces résultats, l'estimation de la proportion de la population pour les ménages ayant réalisé un achat est de 0,087. Vous pouvez être sûr à 95 % que la proportion est comprise entre 0,07 et 0,106 environ.

Valeur de Z

La valeur de Z est une statistique de test pour les tests Z qui mesure la différence entre une statistique observée et son paramètre de population hypothétisé, en unités d'erreur type.

Vous devez choisir Approximation selon la loi normale comme méthode pour que Minitab calcule la valeur de Z.

Interprétation

Vous pouvez comparer la valeur de Z aux valeurs critiques de la loi normale standard pour déterminer s'il faut rejeter l'hypothèse nulle. Cependant, il est souvent plus pratique et plus commode d'utiliser la valeur de p du test pour cela.

Pour savoir si l'hypothèse nulle doit être rejetée, comparez la valeur de Z à la valeur critique. La valeur critique est Z1-α/2 pour un test bilatéral et Z1-α pour un test unilatéral. Pour un test bilatéral, si la valeur absolue de Z est supérieure à la valeur critique, vous rejetez l'hypothèse nulle. Dans le cas contraire, vous ne pouvez pas rejeter l'hypothèse nulle. Vous pouvez calculer la valeur critique dans Minitab ou rechercher la valeur critique dans un tableau de loi normale standard, disponible dans la plupart des livres de statistiques. Pour plus d'informations, accédez à Utilisation de la fonction de répartition (CDF) inverse et cliquez sur "Utilisation de la fonction de répartition inverse pour calculer les valeurs critiques".

La valeur de Z sert à calculer la valeur de p.

valeur de p

La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Une valeur de p inférieure fournit des preuves plus solides par rapport à l'hypothèse nulle.

Interprétation

Utilisez la valeur de p pour déterminer si la proportion de la population est statistiquement différente de la proportion hypothétisée.

Pour déterminer si la différence entre la proportion de la population et la proportion hypothétisée est statistiquement significative, comparez la valeur de p au seuil de signification. En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe.
Valeur de p ≤ α : la différence entre les proportions est statistiquement significative (Rejeter H0)
Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez rejeter l'hypothèse nulle. Vous pouvez conclure que la différence entre la proportion de la population et la proportion hypothétisée est statistiquement significative. Utilisez vos connaissances afin de déterminer si la différence est significative dans la pratique. Pour plus d'informations, reportez-vous à la rubrique Signification statistique et pratique.
Valeur de p > α : la différence entre les proportions n'est pas statistiquement significative (Impossible de rejeter H0)
Si la valeur de p est supérieure au seuil de signification, vous ne pouvez pas rejeter l'hypothèse nulle. Vous n'êtes pas en mesure de conclure que la différence entre la proportion de la population et la proportion hypothétisée est statistiquement significative. Vous devez vous assurer que votre test est assez puissant pour détecter une différence qui est significative dans la pratique. Pour plus d'informations, reportez-vous à la rubrique Puissance et effectif de l'échantillon pour 1 proportion.
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique