Interprétation des résultats principaux pour la fonction Ajuster le modèle de régression

Suivez les étapes ci-dessous pour interpréter un modèle de régression. Les résultats principaux incluent la valeur de p, les coefficients, R2 et les graphiques des valeurs résiduelles.

Etape 1 : Déterminer si l'association entre la réponse et le terme est significative du point de vue statistique

Pour déterminer si l'association entre la réponse et chacun des termes du modèle est statistiquement significative, comparez la valeur de p du terme à votre seuil de signification pour évaluer l'hypothèse nulle. L'hypothèse nulle est qu'il n'existe aucune association entre le terme et la réponse. En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'il existe une association.
Valeur de p ≤ α : l'association est statistiquement significative.
Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme.
Valeur de p > α : l'association n'est pas statistiquement significative.
Si la valeur de p est supérieure au seuil de signification, vous ne pouvez pas conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme. Il est sans doute nécessaire de réajuster le modèle sans le terme.
Si plusieurs prédicteurs ne présentent aucune association statistiquement significative avec la réponse, vous pouvez réduire le modèle en supprimant ces termes un par un. Pour plus d'informations sur la suppression de termes d'un modèle, reportez-vous à la rubrique Réduction du modèle.
Si un terme d'un modèle est statistiquement significatif, l'interprétation dépend du type de terme concerné. Les interprétations sont les suivantes :
  • Si un prédicteur continu est significatif, vous pouvez en conclure que le coefficient de ce prédicteur est différent de zéro.
  • Si un prédicteur de catégorie est significatif, vous pouvez en conclure que les moyennes des niveaux ne sont pas toutes égales.
  • Si un terme d'interaction est significatif, vous pouvez en conclure que la relation entre un prédicteur et la réponse dépend des autres prédicteurs du terme.
  • Si un terme polynomial est significatif, vous pouvez en conclure que les données contiennent une courbure.
Coefficients Valeur Valeur Terme Coeff Coef ErT de T de p FIV Constante -0,756 0,736 -1,03 0,314 Conc 0,1545 0,0633 2,44 0,022 1,03 Rapport 0,2171 0,0316 6,86 0,000 1,02 Tempé 0,01081 0,00462 2,34 0,027 1,04 Temps 0,0946 0,0546 1,73 0,094 1,00
Résultats principaux : valeur de p, coefficients

La concentration en formaldéhyde, le rapport du catalyseur et la température des prédicteurs ont des valeurs de p inférieures au seuil de signification de 0,05. Ces résultats indiquent que les prédicteurs ont une relation significative avec la résistance au froissement d'un point de vue statistique. Par exemple, le coefficient pour la concentration en formaldéhyde estime que la résistance moyenne au froissement augmente de 0,1545 unité pour chaque incrément d'une unité de la concentration, alors que les autres termes du modèle sont constants.

La valeur de p pour la durée est supérieure à 0,05 ; les preuves ne suffisent donc pas à conclure que la durée est liée à la réponse. Le chimiste peut réajuster le modèle sans le prédicteur.

Etape 2 : Déterminer l'ajustement du modèle aux données

Pour déterminer l'ajustement du modèle aux données, étudiez les statistiques d'adéquation de l'ajustement dans le tableau Récapitulatif du modèle.

S

Utilisez S pour évaluer la capacité du modèle à décrire la réponse. Utilisez S plutôt que les statistiques R2 pour comparer l'ajustement des modèles qui n'ont pas de constante.

S est mesuré en unités de la variable de réponse et représente la distance entre les valeurs de données et les valeurs ajustées. Plus S est petit, mieux le modèle décrit la réponse. Cependant, une faible valeur de S n'indique pas en soi que le modèle respecte les hypothèses du modèle. Vous devez examiner les graphiques des valeurs résiduelles pour vérifier les hypothèses.

R carré

Plus la valeur R2 est élevée, plus le modèle est ajusté à vos données. R2 est toujours compris entre 0 et 100 %.

La valeur R2 augmente toujours lorsque vous ajoutez des prédicteurs à un modèle. Par exemple, le meilleur modèle à 5 prédicteurs aura toujours une valeur R2 au moins aussi élevée que celle du meilleur modèle à 4 prédicteurs. Par conséquent, R2 est surtout utile pour comparer des modèles de même taille.

R carré (ajusté)

Utilisez la valeur R2 ajusté pour comparer des modèles n'ayant pas le même nombre de prédicteurs. R2 augmente toujours lorsque vous ajoutez un prédicteur au modèle, même lorsque ce prédicteur n'apporte aucune amélioration réelle au modèle. La valeur de R2 ajusté intègre le nombre de prédicteurs dans le modèle pour vous aider à choisir le modèle correct.

R carré (prév)

La valeur R2 prévu permet de déterminer la capacité de votre modèle à prévoir la réponse pour de nouvelles observations. Les modèles ayant des valeurs de R2 prévu élevées ont une meilleure capacité de prévision.

Une valeur de R2 prévu considérablement inférieure à R2 peut être un signe de surajustement du modèle. Un modèle est dit surajusté lorsqu'il inclut des termes pour des effets qui ne sont pas importants dans la population. Le modèle est alors spécialement ajusté aux données des échantillons, mais risque ne pas être utile pour effectuer des prévisions concernant la population entière.

La valeur R2 prévu peut également être plus utile que R2 ajusté pour comparer des modèles, car elle est calculée avec des observations qui ne sont pas incluses dans le calcul du modèle.

Tenez compte des éléments suivants lorsque vous interprétez les valeurs R2 :
  • Les petits échantillons ne fournissent pas d'estimation précise de la force de la relation entre la réponse et les prédicteurs. Pour obtenir une valeur R2 plus précise, vous devez utiliser un échantillon plus grand (en général, 40 ou plus).

  • R2 n'est qu'une des mesures de l'ajustement du modèle aux données. Même si un modèle a une valeur R2 élevée, vous devez consulter les graphiques des valeurs résiduelles pour vérifier que le modèle respecte les hypothèses.

Récapitulatif du modèle R carré R carré S R carré (ajust) (prév) 0,811840 72,92% 68,90% 62,81%
Résultats principaux : S, R carré, R carré (ajusté), R carré (prév)

Dans ces résultats, le modèle explique environ 73 % de la variation de la réponse. Pour ces données, la valeur R2 indique que le modèle est bien ajusté aux données. Si vous ajustez d'autres modèles avec des prédicteurs différents, utilisez les valeurs R2 ajustées et les valeurs R2 prévues pour comparer le degré d'ajustement du modèle aux données.

Etape 3 : Déterminer si votre modèle vérifie les hypothèses de l'analyse

Les graphiques des valeurs résiduelles permettent de déterminer si le modèle est adapté et si les hypothèses de l'analyse sont vérifiées. Si elles ne le sont pas, il se peut que le modèle ne soit pas ajusté aux données et vous devez être prudent lors de l'interprétation des résultats.

Pour plus d'informations sur la manière de traiter les schémas dans les graphiques des valeurs résiduelles, reportez-vous à la rubrique Graphiques des valeurs résiduelles pour Ajuster le modèle de régression et cliquez sur le nom du graphique des valeurs résiduelles dans la liste située en haut de la page.

Graphique des valeurs résiduelles en fonction des valeurs ajustées

Utilisez le diagramme des valeurs résiduelles en fonction des valeurs ajustées pour vérifier l'hypothèse selon laquelle les valeurs résiduelles suivent une loi normale et ont une variance constante. Dans l'idéal, les points doivent être répartis aléatoirement des deux côtés de 0, sans schéma reconnaissable.

Les schémas du tableau suivant peuvent indiquer que le modèle n'est pas adapté.
Schéma Ce que le schéma indique
Eparpillement ou répartition déséquilibrée des valeurs résiduelles en fonction des valeurs ajustées Variance non constante
Curviligne Un terme d'ordre supérieur manquant
Un point très éloigné de zéro Une valeur aberrante
Un point éloigné des autres points dans le sens des x Un point influent
Dans le graphique des valeurs résiduelles en fonction des valeurs ajustées, les points ne semblent pas être dispersés de façon aléatoire autour de zéro. Ils ressemblent à des rassemblements de points pouvant représenter différents groupes dans les données. Vous devez examiner ces groupes pour en déterminer l'origine.

Graphique des valeurs résiduelles en fonction de l'ordre

Utilisez le diagramme des valeurs résiduelles en fonction de l'ordre pour vérifier l'hypothèse selon laquelle les valeurs résiduelles sont indépendantes les unes par rapport aux autres. Les valeurs résiduelles indépendantes ne présentent aucune tendance ou schéma lorsqu'elles sont affichées dans un ordre chronologique. La présence de schémas dans les points peut indiquer que les valeurs résiduelles qui sont proches les unes des autres peuvent être corrélées, et ne sont donc pas indépendantes. Idéalement, les valeurs résiduelles du graphique doivent être réparties de façon aléatoire autour de la ligne centrale.
Si vous observez un schéma, étudiez-en la cause. Les types de schémas suivants peuvent indiquer que les valeurs résiduelles sont corrélées.
Tendance
Equipe
Cycle
Dans le graphique des valeurs résiduelles en fonction de l'ordre, les valeurs résiduelles ne semblent pas être dispersées de façon aléatoire autour de zéro. Les valeurs résiduelles semblent systématiquement diminuer à mesure que l'ordre des observations augmente. Examinez la tendance pour en déterminer la cause.

Droite de Henry des valeurs résiduelles

Utilisez la droite de Henry des valeurs résiduelles afin de vérifier l'hypothèse selon laquelle les valeurs résiduelles sont normalement distribuées. La droite de Henry des valeurs résiduelles doit suivre approximativement une ligne droite.

Les schémas du tableau suivant peuvent indiquer que le modèle n'est pas adapté.
Schéma Ce que le schéma indique
Une ligne qui n'est pas droite Non-normalité
Un point éloigné de la ligne Une valeur aberrante
Une modification de la pente Une variable non identifiée
Sur cette droite de Henry, les points suivent approximativement une ligne droite. Il n'existe aucun signe de non-normalité, de valeurs aberrantes ou de variables non identifiées.
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique