Méthodes de liaison pour la fonction Variables de groupes

Moyenne

En liaison moyenne, la distance entre deux groupes est égale à la distance moyenne entre une variable d'un groupe et une variable de l'autre. La distance moyenne est calculée avec la matrice de distance suivante :

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j
Nknombre de variables dans le groupe k
Nlnombre de variables dans le groupe l
Nmnombre de variables dans le groupe m

Centré

En liaison du point central, la distance séparant deux groupes est la distance entre les centres ou les moyennes des groupes. La distance est calculée avec la matrice de distance suivante :

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j
Nknombre de variables dans le groupe k
Nlnombre de variables dans le groupe l
Nmnombre de variables dans le groupe m

Complet

Avec la méthode de liaison complète (dite du voisin le plus éloigné), la distance entre deux groupes est égale à la distance maximale entre une observation d'un groupe et une variable de l'autre. La distance complète est calculée avec la matrice de distance suivante :

dmj = max (dkj, dlj)

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j

McQuitty

Avec la méthode de liaison de McQuitty, la distance est calculée avec la matrice de distance suivante :

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j

Médiane

En liaison médiane, la distance entre deux groupes est égale à la distance médiane entre une variable d'un groupe et une variable de l'autre. La distance médiane est calculée avec la matrice de distance suivante :

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j
dkldistance entre les groupes k et l

Unique

Avec la méthode de liaison simple, dite du voisin le plus proche, la distance entre deux groupes est égale à la distance minimale entre une variable d'un groupe et une variable de l'autre groupe.

La distance est calculée avec la matrice de distance suivante :

dmj = min (dkj, dlj)

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j

Ward

En liaison de Ward, la distance entre deux groupes est égale à la somme des écarts quadratiques entre les points et les centres. Le but de la liaison de Ward est de minimiser la somme des carrés à l'intérieur du groupe. La distance est calculée avec la matrice de distance suivante :

Remarque

Avec cette méthode, la distance entre deux groupes peut être supérieure à d(max), la valeur maximale dans la matrice de distance initiale, D. Dans ce cas, la similarité est négative.

Notation

TermeDescription
dmjdistance entre les groupes m et j
mgroupe fusionné constitué des groupes k et l, avec m = (k,i)
dkjdistance entre les groupes k et j
dljdistance entre les groupes l et j
dkldistance entre les groupes k et l
Njnombre de variables dans le groupe j
Nknombre de variables dans le groupe k
Nlnombre de variables dans le groupe l
Nmnombre de variables dans le groupe m
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique