Tableau des coefficients pour la fonction Analyser un plan de criblage définitif

Coeff

Le coefficient décrit l'importance et le sens de la relation entre un terme du modèle et la variable de réponse. Pour minimiser la multicolinéarité entre les termes, les coefficients sont tous représentés en unités codées.

Interprétation

Le coefficient d'un terme représente le changement dans la réponse moyenne associée à une augmentation d'une unité codée de ce terme quand tous les autres termes sont maintenus constants. Le signe du coefficient indique le sens de la relation entre le terme et la réponse. L'importance de l'effet n'indique pas si un terme est statistiquement significatif ou non, car le calcul de la signification prend également en compte la précision des estimations de coefficients. Pour évaluer la signification statistique, examinez la valeur de p du terme.

Les termes qui ne comprennent pas de facteurs, tels que les termes de covariables et les termes de blocs, n'utilisent pas d'unités codées. L'interprétation de ces coefficients est différente.

Covariables
Le coefficient d'une covariable est exprimé dans les mêmes unités que la covariable. Le coefficient représente le changement dans la moyenne prévue de la réponse pour une augmentation d'une unité dans la covariable. Si le coefficient est négatif, plus la covariable augmente, plus la moyenne prévue de la réponse diminue. Si le coefficient est positif, plus la covariable augmente, plus la moyenne prévue de la réponse augmente. Etant donné que les covariables ne sont pas codées et ne sont habituellement pas orthogonales par rapport aux facteurs, leur présence augmente généralement les valeurs des FIV. Pour plus d'informations, reportez-vous à la section sur les FIV.
Blocs
Les blocs sont des variables de catégorie auxquelles on applique un schéma de codage (−1, 0, +1). Chaque coefficient représente la différence entre la moyenne de la réponse pour le bloc et la moyenne globale de la réponse.

Coef ErT

L'erreur type du coefficient estime la variabilité entre les estimations des coefficients que vous obtiendriez si vous préleviez des échantillons dans la même population de façon répétée. Le calcul suppose que le plan d'expériences et les coefficients à estimer restent identiques même après plusieurs échantillonnages.

Interprétation

Utilisez l'erreur type du coefficient pour mesurer la précision de l'estimation du coefficient. Plus l'erreur type est petite, plus l'estimation est précise. Si vous divisez le coefficient par son erreur type, vous obtiendrez une valeur de t. Si la valeur de p associée à cette statistique t est inférieure au seuil de signification, vous en concluez que le coefficient est significatif sur le plan statistique.

Intervalle de confiance pour le coefficient (IC à 95 %)

Ces intervalles de confiance (IC) sont des étendues de valeurs ayant de fortes chances de contenir la véritable valeur du coefficient pour chaque terme du modèle.

Les échantillons étant aléatoires, il est peu probable que deux échantillons d'une population donnent des intervalles de confiance identiques. Cependant, si vous prenez de nombreux échantillons aléatoires, un certain pourcentage des intervalles de confiance obtenus contiendra le paramètre de population inconnu. Le pourcentage de ces intervalles de confiance contenant le paramètre est le niveau de confiance de l'intervalle.

L'intervalle de confiance est composé de deux parties :
Estimation ponctuelle
Cette valeur unique estime un paramètre de population à l'aide de vos données échantillons. L'intervalle de confiance est centré sur cette estimation ponctuelle.
Marge d'erreur
La marge d'erreur définit la largeur de l'intervalle de confiance et est déterminée par la variabilité observée dans l'échantillon, l'effectif de l'échantillon et le niveau de confiance. Pour calculer la limite supérieure de l'intervalle de confiance, la marge d'erreur est ajoutée à l'estimation ponctuelle. Pour calculer la limite inférieure de l'intervalle de confiance, la marge d'erreur est soustraite de l'estimation ponctuelle.

Interprétation

Un intervalle de confiance permet d'obtenir une estimation du coefficient de population pour chaque terme du modèle.

Par exemple, avec un niveau de confiance de 95 %, vous pouvez être sûr à 95 % que l'intervalle de confiance comprend la valeur ou le coefficient de la population. L'intervalle de confiance vous aide à évaluer la signification pratique de vos résultats. Utilisez vos connaissances spécialisées pour déterminer si l'intervalle de confiance comporte des valeurs ayant une signification pratique pour votre situation. Si l'intervalle est trop grand pour être utile, vous devez sans doute augmenter votre effectif d'échantillon.

Valeur de t

La valeur de t mesure le rapport entre le coefficient et son erreur type.

Interprétation

Minitab utilise la valeur de t pour calculer la valeur de p, qui permet de déterminer si le coefficient est significativement différent de 0.

Vous pouvez utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée. Cependant, la valeur de p est plus souvent utilisée, car le seuil de rejet de l'hypothèse nulle ne dépend pas des degrés de liberté. Pour plus d'informations sur l'utilisation de la valeur de t, reportez-vous à la rubrique Utiliser la valeur de t afin de déterminer si l'hypothèse nulle doit être rejetée.

Valeur de p - Coefficient

Une valeur de p est une probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Des probabilités faibles permettent d'invalider l'hypothèse nulle avec plus de certitude.

Interprétation

Pour déterminer si un coefficient est différent de 0, comparez la valeur de p du terme à votre seuil de signification afin d'évaluer l'hypothèse nulle. L'hypothèse nulle est que le coefficient est égal à 0, ce qui implique qu'il n'existe aucune association entre le terme et la réponse.

En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique qu'il existe un risque de 5 % de conclure à tort que le coefficient n'est pas 0.

Valeur de p ≤ α : l'association est statistiquement significative.
Si la valeur de p est inférieure ou égale au seuil de signification, vous pouvez conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme.
Valeur de p > α : l'association n'est pas statistiquement significative.
Si la valeur de p est supérieure au seuil de signification, vous ne pouvez pas conclure qu'il existe une association statistiquement significative entre la variable de réponse et le terme. Il est sans doute nécessaire de réajuster le modèle sans le terme.
Si plusieurs prédicteurs ne présentent aucune association statistiquement significative avec la réponse, vous pouvez réduire le modèle en supprimant ces termes un par un. Pour plus d'informations sur la suppression de termes d'un modèle, reportez-vous à la rubrique Réduction du modèle.
Si un coefficient est statistiquement significatif, l'interprétation dépend du type de terme. Les interprétations sont les suivantes :
Termes linéaires
Si le coefficient d'un terme linéaire est statistiquement significatif, vous pouvez en conclure que le coefficient du terme linéaire n'est pas égal à 0.
Interactions entre facteurs
Si le coefficient d'une interaction est statistiquement significatif, vous pouvez en conclure que la relation entre un facteur et la réponse dépend des autres facteurs du terme.
Termes au carré
Si le coefficient d'un terme au carré est statistiquement significatif, vous pouvez en conclure que la relation entre le facteur et la réponse est une courbe.
Covariables
Si le coefficient d'une covariable est statistiquement significatif, vous pouvez en conclure que l'association entre la réponse et la covariable l'est aussi.
Blocs
Si le coefficient d'un bloc est statistiquement significatif, vous pouvez en conclure que la moyenne des valeurs de réponse dans ce bloc est différente de la moyenne globale pour la réponse.

FIV

Le facteur d'inflation de la variance (FIV) indique dans quelle mesure la variance d'un coefficient est augmentée par les corrélations existant entre les prédicteurs du modèle.

Interprétation

Les FIV permettent de décrire l'importance de la multicolinéarité (la corrélation entre des prédicteurs) dans un modèle. Le cas le plus courant pour les modèles de plans de criblage est la présence unique des effets principaux. Dans ce cas, le FIV est égal à 1 sauf en présence de covariables ou d'essais ratés. Les confusions partielles courantes dans les modèles de plans de criblage augmentent la multicolinéarité. La multicolinéarité complique la détermination de la signification statistique. L'inclusion de covariables dans le modèle et l'occurrence d'essais ratés pendant la collecte des données peuvent également augmenter les valeurs de FIV. Utilisez les directives suivantes pour interpréter les facteurs d'inflation de la variance :

FIV Etat du prédicteur
FIV = 1 non corrélés
1 < FIV < 5 modérément corrélés
FIV > 5 hautement corrélés
Les prédicteurs fortement corrélés sont problématiques, car la multicolinéarité peut augmenter la variance des coefficients de régression. Les conséquences de coefficients instables peuvent être les suivantes :
  • Les coefficients peuvent ne pas sembler statistiquement significatifs, même lorsqu'il existe une relation importante entre le prédicteur et la réponse.
  • Les coefficients de prédicteurs fortement corrélés varieront considérablement d'un échantillon à un autre.
  • Lorsque des termes d'un modèle sont fortement corrélés, la suppression de l'un de ces termes aura une incidence considérable sur les coefficients estimés des autres. Les coefficients des termes fortement corrélés peuvent même présenter le mauvais signe.

En cas de multicolinéarité, faites preuve de prudence lorsque vous vous fondez sur la signification statistique pour choisir les termes à enlever d'un modèle. Les termes doivent être ajoutés ou retirés un par un. A chaque modification du modèle, étudiez les changements dans les statistiques récapitulatives du modèle et les tests de signification statistiques.

En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique