Données sur la farine de soja

Un scientifique travaillant dans un laboratoire de chimie alimentaire analyse 60 échantillons de farine de soja. Pour chaque échantillon, le scientifique détermine les quantités d'humidité et de lipides et relève des données spectrales NIR pour 88 longueurs d'onde. Le scientifique sélectionne de manière aléatoire 54 des 60 échantillons et estime la relation entre les réponses (humidité et lipides) et les prédicteurs (les 88 longueurs d'onde) à l'aide de la régression PLS. Le scientifique utilise les six échantillons restants comme ensemble de données de test afin d'évaluer la capacité de prévision du modèle.

Ces données permettent de montrer comment s'utilise la fonction PLS (moindres carrés partiels).

Colonne de feuille de travail Description Type de variable
C1-C88 Données spectrales NIR pour 88 longueurs d'onde de 54 échantillons Prédicteur
Humidité Humidité de chaque échantillon de farine Réponse
Lipides Quantité de lipides de chaque échantillon de farine Réponse
C91-C178 Données spectrales NIR pour 88 longueurs d'onde des 6 échantillons utilisés comme ensemble de test Prédicteur
Humidité2 Humidité de chaque échantillon de farine de l'ensemble de test Réponse
Lipides2 Quantité de lipides de chaque échantillon de farine de l'ensemble de test Réponse
En utilisant ce site, vous acceptez l'utilisation de cookies à des fins d'analyse et de personnalisation du contenu.  Lisez notre politique