Interpretar todos los estadísticos para Prueba de Friedman

Encuentre definiciones y ayuda para interpretar cada uno de los estadísticos que se proporcionan con la prueba de Friedman.

N

El tamaño de la muestra (N) es el número total de observaciones en cada grupo.

Interpretación

El tamaño de la muestra afecta el intervalo de confianza y la potencia de la prueba.

Generalmente, una muestra más grande produce un intervalo de confianza más estrecho. Con un tamaño de la muestra más grande, la prueba también tendrá más potencia para detectar una diferencia. Para obtener más información, vaya a ¿Qué es potencia?.

Mediana

La mediana es el punto medio del conjunto de datos. El valor de este punto medio es el punto en el cual la mitad de las observaciones está por encima del valor y la otra mitad está por debajo del valor. La mediana se determina jerarquizando las observaciones y hallando la observación que ocupe el número [N + 1] / 2 en el orden jerarquizado. Si los datos contienen un número impar de observaciones, la mediana es el valor promedio de las observaciones jerarquizadas en los números N / 2 y [N / 2] + 1.

Interpretación

La mediana de la muestra es una estimación de la mediana de la población de cada grupo. La mediana general es la mediana de todas las observaciones.

Suma de los rangos

Minitab jerarquiza los datos por separado dentro de cada bloque y luego suma los rangos de cada tratamiento. Los valores más altos de los datos reciben rangos más altos.

Interpretación

Una mayor suma de los rangos indica que un tratamiento está asociado con rangos más altos. Minitab utiliza la suma de los rangos para calcular S, el estadístico de prueba para la prueba de Friedman.

Hipótesis nula e hipótesis alternativa

Las hipótesis nula y alternativa son dos enunciados mutuamente excluyentes acerca de una población. Una prueba de hipótesis utiliza los datos de la muestra para determinar si se puede rechazar la hipótesis nula.
Hipótesis nula
La hipótesis nula indica que un parámetro de población (tal como la media, la desviación estándar, etc.) es igual a un valor hipotético. La hipótesis nula suele ser una afirmación inicial que se basa en análisis previos o en conocimiento especializado.
Hipótesis alternativa
La hipótesis alternativa establece que un parámetro de población es más pequeño, más grande o diferente del valor hipotético de la hipótesis nula. La hipótesis alternativa es lo que usted podría pensar que es cierto o espera probar que es cierto.

GL

Los grados de libertad (GL) son iguales al número de grupos en los datos menos 1. Bajo la hipótesis nula, la distribución de chi-cuadrada se aproxima a la distribución del estadístico de prueba, con los grados de libertad especificados. Minitab utiliza la distribución de chi-cuadrada para estimar el valor p para esta prueba.

Chi-cuadrada

El estadístico de chi-cuadrada es el estadístico de prueba para la prueba de Friedman. Bajo la hipótesis nula, la distribución de chi-cuadrada se aproxima a la distribución del estadístico de prueba. La aproximación es razonablemente precisa cuando el número de bloques o el número de tratamientos en el diseño de bloques aleatorizados es mayor que 5.

Interpretación

Minitab utiliza el estadístico de prueba para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de los términos y el modelo. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Un estadístico de prueba lo suficientemente alto indica que al menos una diferencia entre las medianas es estadísticamente significativa.

Se puede utilizar el estadístico de prueba para determinar si puede rechazar la hipótesis nula. Sin embargo, por lo general es más práctico y conveniente utilizar el valor p de la prueba para hacer la misma determinación.

Valor p

El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Interpretación

Utilice el valor p para determinar si cualquiera de las diferencias entre las medianas es estadísticamente significativa.

Para determinar si cualquiera de las diferencias entre las medianas es estadísticamente significativa, compare el valor p con el nivel de significancia para evaluar la hipótesis nula. La hipótesis nula indica que las medias de población son todas iguales. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que existe una diferencia cuando no hay una diferencia real.
Valor p ≤ α: Las diferencias entre algunas de las medianas son estadísticamente significativas
Si el valor p es menor que o igual al nivel de significancia, usted rechaza la hipótesis nula y concluye que no todas las medianas de población son iguales. Utilice su conocimiento especializado para determinar si las diferencias son significativas desde el punto de vista práctico. Para obtener más información, vaya a Significancia estadística y práctica.
Valor p > α: Las diferencias entre las medianas no son estadísticamente significativas
Si el valor p es mayor que el nivel de significancia, usted no cuenta con suficiente evidencia para rechazar la hipótesis nula de que las medianas de población son todas diferentes. Verifique que la prueba tenga suficiente potencia para detectar una diferencia que sea significativa desde el punto de vista práctico. Para obtener más información, vaya a Aumentar la potencia de una prueba de hipótesis.