Interpretar los resultados clave para Prueba de normalidad

Complete los siguientes pasos para interpretar una prueba de normalidad. La salida clave incluye el valor p y la gráfica de probabilidad.

Paso 1: Determinar si los datos no siguen una distribución normal

Para determinar si los datos no siguen una distribución normal, compare el valor p con el nivel de significancia. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que los datos no siguen una distribución normal, cuando los datos sí siguen una distribución normal.
Valor p ≤ α: Los datos no siguen una distribución normal (Rechaza H0)
Si el valor p es menor que o igual al nivel de significancia, la decisión es rechazar la hipótesis nula y concluir que sus datos no siguen una distribución normal.
Valor p > α: Usted no puede concluir que los datos no siguen una distribución normal (No puede rechazar H0)
Si el valor p es mayor que el nivel de significancia, la decisión es que no se puede rechazar la hipótesis nula. Usted no tiene suficiente evidencia para concluir que los datos no siguen una distribución normal.
Resultado clave: Valor p

En estos resultados, la hipótesis nula indica que los datos siguen una distribución normal. Puesto que el valor p es 0.463, que es mayor que el nivel de significancia de 0.05, la decisión es que no se puede rechazar la hipótesis nula. Usted no puede concluir que los datos no siguen una distribución normal.

Paso 2: Visualizar el ajuste de la distribución normal

Para visualizar el ajuste de la distribución normal, examine la gráfica de probabilidad y evalúe qué tan cerca los puntos de los datos siguen la línea de distribución ajustada. Las distribuciones normales tienden a ubicarse cerca de la línea recta, a lo largo de esta. Los datos asimétricos forman una línea curva.
Datos asimétricos hacia la derecha
Datos asimétricos hacia la izquierda
Sugerencia

En Minitab, coloque el cursor sobre la línea de distribución ajustada para ver una gráfica de percentiles y valores.

En esta gráfica de probabilidad, los datos forman una línea aproximadamente recta a lo largo de la línea. La distribución normal parece ajustarse adecuadamente a los datos.