Utilice la media para describir la muestra con un solo valor que representa el centro de los datos. Muchos análisis estadísticos utilizan la media como una medida estándar del centro de la distribución de los datos.
La mediana es otra medida del centro de la distribución de los datos. Por lo general, los valores atípicos influyen menos en la mediana que en la media. La mitad de los valores de los datos es mayor que el valor de la mediana y la mitad de los valores de los datos es menor que el valor de la mediana.
El intervalo de confianza proporciona un rango de valores probables para el parámetro de población. Por ejemplo, un nivel de confianza de 95% indica que si usted toma 100 muestras aleatorias de la población, podría esperar que aproximadamente 95 de las muestras produzcan intervalos que contengan el parámetro de población.
Utilice el histograma y la gráfica de caja para evaluar la forma y dispersión de los datos y para identificar cualquier posible valor atípico.
Cuando los datos son asimétricos, la mayoría de los datos se ubican en la parte superior o inferior de la gráfica. Con frecuencia, es fácil detectar la asimetría con un histograma o una gráfica de caja.
Los valores atípicos, que son valores de datos que están muy distantes de otros valores de datos, pueden afectar considerablemente los resultados de un análisis. Con frecuencia, es fácil identificar los valores atípicos en una gráfica de caja.
Trate de identificar la causa de cualquier valor atípico. Corrija cualquier error de entrada de datos o de medición. Considere eliminar los valores de datos asociados con eventos anormales y únicos (también conocidos como causas especiales). Luego, repita el análisis. Para obtener más información, vaya a Identificar valores atípicos.
Los datos multimodales tienen múltiples picos, también denominados modas. Los datos multimodales suelen indicar que aún no se han considerado variables importantes.
Si usted tiene información adicional que le permita clasificar las observaciones en grupos, puede crear una variable de grupo con esta información. Luego, puede crear la gráfica con los grupos para determinar si la variable de grupo explica los picos en los datos.