El número de observaciones en las series de tiempo.
El número de valores faltantes en las series de tiempo.
La longitud del promedio móvil es el número de observaciones consecutivas que Minitab utiliza para calcular los promedios móviles. Por ejemplo, para datos mensuales, un valor de 3 indica que el promedio móvil de marzo es el promedio de las observaciones de marzo, febrero y enero.
El error porcentual absoluto medio (MAPE) expresa la exactitud como un porcentaje del error. Debido a que el MAPE es un porcentaje, puede ser más fácil de entender que otros estadísticos de medición de exactitud. Por ejemplo, si el MAPE es 5, en promedio, el pronóstico está errado en un 5%.
Sin embargo, es posible que algunas veces observe un valor de MAPE muy elevado aunque el modelo parezca ajustarse a los datos adecuadamente. Examine la gráfica para ver si los valores de los datos se aproximan a 0. Debido a que MAPE divide el error absoluto entre los datos reales, los valores que se aproximan a 0 pueden aumentar significativamente el MAPE.
Utilice para comparar los ajustes de diferentes modelos de series de tiempo. Valores más pequeños indican un mejor ajuste. Si un modelo individual no tiene los valores más bajos para las 3 medidas de exactitud, MAPE es generalmente la medición más recomendable.
Las medidas de exactitud se basan en residuos de un período por delante. En cada punto en el tiempo, se utiliza el modelo para predecir el valor Y correspondiente al siguiente período en el tiempo. La diferencia entre los valores pronosticados (ajustes) y Y real son los residuos un período por delante. Por tal motivo, las medidas de exactitud proporcionan un indicio de la exactitud que usted pudiera esperar al pronosticar 1 período proveniente del final de los datos. Por lo tanto, no indican la exactitud al pronosticar más de 1 período. Si está utilizando el modelo para realizar pronósticos, no debería basar su decisión únicamente en las medidas de exactitud. Usted también debería examinar el ajuste del modelo para garantizar que el modelo sigue los datos de manera estrecha, particularmente al final de las series.
La desviación absoluta de la media (MAD) expresa exactitud en las mismas unidades que los datos, lo que ayuda a conceptualizar la cantidad del error. Los valores atípicos tienen menos efecto en MAD que en MSD.
Utilice para comparar los ajustes de diferentes modelos de series de tiempo. Valores más pequeños indican un mejor ajuste.
Las medidas de exactitud se basan en residuos de un período por delante. En cada punto en el tiempo, se utiliza el modelo para predecir el valor Y correspondiente al siguiente período en el tiempo. La diferencia entre los valores pronosticados (ajustes) y Y real son los residuos un período por delante. Por tal motivo, las medidas de exactitud proporcionan un indicio de la exactitud que usted pudiera esperar al pronosticar 1 período proveniente del final de los datos. Por lo tanto, no indican la exactitud al pronosticar más de 1 período. Si está utilizando el modelo para realizar pronósticos, no debería basar su decisión únicamente en las medidas de exactitud. Usted también debería examinar el ajuste del modelo para garantizar que el modelo sigue los datos de manera estrecha, particularmente al final de las series.
La desviación cuadrática media (MSD) mide la exactitud de los valores ajustados de las series de tiempo.Los valores atípicos tienen mayor efecto en MSD que en MAD.
Utilice para comparar los ajustes de diferentes modelos de series de tiempo. Valores más pequeños indican un mejor ajuste.
Las medidas de exactitud se basan en residuos de un período por delante. En cada punto en el tiempo, se utiliza el modelo para predecir el valor Y correspondiente al siguiente período en el tiempo. La diferencia entre los valores pronosticados (ajustes) y Y real son los residuos un período por delante. Por tal motivo, las medidas de exactitud proporcionan un indicio de la exactitud que usted pudiera esperar al pronosticar 1 período proveniente del final de los datos. Por lo tanto, no indican la exactitud al pronosticar más de 1 período. Si está utilizando el modelo para realizar pronósticos, no debería basar su decisión únicamente en las medidas de exactitud. Usted también debería examinar el ajuste del modelo para garantizar que el modelo sigue los datos de manera estrecha, particularmente al final de las series.
Los valores de promedio móvil se calculan a partir de observaciones consecutivas. Por ejemplo, para datos mensuales con una longitud de promedio móvil de 3, el promedio móvil de marzo es el promedio de las observaciones de marzo, febrero y enero.
El valor pronosticado para el tiempo t es igual a los valores de promedio móvil en el tiempo t-1.
Las observaciones con valores pronosticados que sean muy diferentes del valor observado pueden ser poco comunes o influyentes. Intente identificar la causa de cualesquiera valores atípicos. Corrija cualquier error de entrada de datos o de medición. Considere eliminar los valores de datos que estén asociados con eventos anormales y únicos (causas especiales). Luego, repita el análisis.
Los valores de error también se denominan residuos. Los valores de error son las diferencias entre los valores observados y los pronosticados.
!Grafique los valores de error para determinar si su modelo es adecuado. Los valores pueden proporcionar información útil sobre el grado en que el modelo se ajusta a los datos. En general, los valores de error deberían estar aleatoriamente distribuidos alrededor de 0 sin patrones obvios ni valores poco comunes.
Minitab muestra el período cuando usted genera los pronósticos. El período es la unidad de tiempo del pronóstico. Por opción predeterminada, los pronósticos comienzan al final de los datos.
Los pronósticos son los valores ajustados obtenidos del modelo de series de tiempo. Minitab muestra el número de pronósticos que usted especifique. Los pronósticos comienzan al final de los datos o en el punto de origen que usted especifique.
Utilice los pronósticos con el fin de predecir una variable para un período de tiempo específico. Por ejemplo, la gerente de un almacén puede modelar la cantidad de productos que necesita ordenar para los próximos 3 meses con base en los pedidos de los últimos 60 meses.
Examine los ajustes y los pronósticos en la gráfica para determinar si es probable que los pronósticos sean exactos. Generalmente, los pronósticos deberían seguir el flujo de los datos al final de las series. Si los ajustes se alejan de los datos al final de las series, es posible que los pronósticos no sean exactos. Debido a que los pronósticos de promedio móvil son constantes, es importante que no haya tendencia alguna en los datos antes de los pronósticos. Si hay una tendencia antes de los pronósticos, estos pudieran no ser exactos.
Los pronósticos de promedio móvil son muy conservadores debido a que se basan únicamente en la última estimación del nivel y no en una estimación de la tendencia. Generalmente usted debería pronosticar sólo 6 períodos en el futuro.
Los límites de predicción inferior y superior producen un intervalo de predicción para cada pronóstico. El intervalo de predicción es un rango de valores de pronósticos probables. Por ejemplo, con un intervalo de predicción de 95%, usted puede estar 95% seguro de que el intervalo de predicción contiene el pronóstico en el tiempo especificado.
La gráfica de promedio móvil muestra las observaciones en comparación con el tiempo. La gráfica incluye los ajustes que se calcularon a partir de los promedios móviles, los pronósticos, la longitud del promedio móvil y las medidas de exactitud. Usted también puede elegir mostrar los valores suavizados en lugar de los ajustes.
El histograma de los residuos muestra la distribución de los residuos para todas las observaciones. Si el modelo se ajusta a los datos, los residuos deberían ser aleatorios con una media de 0. De modo que el histograma debería exhibir simetría alrededor de 0.
La gráfica normal de los residuos muestra los residuos comparados con los valores esperados cuando la distribución es normal.
Utilice la gráfica normal de los residuos para determinar si éstos están normalmente distribuidos. Sin embargo, este análisis no requiere residuos normalmente distribuidos.
La gráfica de los residuos vs. los ajustes muestra los residuos en el eje Y y los valores ajustados en el eje X.
Utilice la gráfica de los residuos vs. los ajustes para determinar si los residuos no poseen sesgo y tienen una varianza constante. Lo ideal sería que los puntos estuvieran ubicados de manera aleatoria a ambos lados de 0, sin patrones reconocibles en los puntos.
Patrón | Qué puede indicar el patrón |
---|---|
Dispersión en abanico o irregular de los residuos en los valores ajustados | Varianza no constante |
Curvilíneo | Un término de orden superior faltante |
Un punto que está alejado de cero | Un valor atípico |
Si observa varianza no constante o patrones en los residuos, es posible que sus pronósticos no sean exactos.
La gráfica de los residuos vs. el orden muestra los residuos en el orden en que se recolectaron los datos.
Utilice la gráfica de los residuos vs. el orden para determinar con qué exactitud los ajustes se comparan con los valores ajustados durante el período de observación. Los patrones en los puntos pueden indicar que el modelo no se ajusta a los datos. Lo ideal sería que los residuos de la gráfica se ubicaran de manera aleatoria alrededor de la línea central.
Patrón | Qué puede indicar el patrón |
---|---|
Una tendencia constante a largo plazo | El modelo no se ajusta a los datos |
Una tendencia a corto plazo | Un desvío o cambio en el patrón |
Un punto que está alejado del resto de los puntos | Un valor atípico |
Un desvío repentino en los puntos | Un cambio en el patrón subyacente de los datos |
La gráfica de los residuos vs. las variables muestra los residuos vs. otra variable.
Utilice la gráfica para determinar si la variable afecta la respuesta de una manera sistemática. Si hay patrones presentes en los residuos, se asocian las otras variables con la respuesta. Usted puede utilizar esta información como la base para otros estudios.