Un coeficiente de regresión describe el tamaño y la dirección de la relación entre un predictor y la puntuación de riesgo. Los coeficientes son los números por los cuales se multiplican los valores del término en una ecuación de regresión.
Utilice el coeficiente para determinar si un cambio en una variable predictora hace que el evento sea más o menos probable. Por lo general, los coeficientes positivos hacen que el evento sea más probable y los coeficientes negativos hacen que el evento sea menos probable. Un coeficiente estimado cercano a 0 implica que el efecto del predictor es pequeño. Para un predictor categórico, la interpretación depende de la codificación.
El error estándar del coeficiente estima la variabilidad entre las estimaciones del coeficiente que se obtendrían si se tomara las muestras de la misma población una y otra vez. El cálculo asume que el tamaño de la muestra y los coeficientes a estimar se mantendrían iguales si se tomara la muestra una y otra vez.
Utilice el error estándar del coeficiente para medir la precisión de la estimación del coeficiente. Cuanto menor sea el error estándar, más precisa será la estimación.
Estos intervalos de confianza (IC) son rangos de valores que es probable que contengan el verdadero valor del coeficiente para cada término incluido en el modelo. El cálculo de los intervalos de confianza utiliza la distribución normal. El intervalo de confianza es exacto si el tamaño de la muestra es lo suficientemente grande como para que la distribución del coeficiente de la muestra siga una distribución normal.
Puesto que las muestras son aleatorias, es poco probable que dos muestras de una población produzcan intervalos de confianza idénticos. Sin embargo, si toma muchas muestras aleatorias, un determinado porcentaje de los intervalos de confianza resultantes incluirá el parámetro de población desconocido. El porcentaje de estos intervalos de confianza que contiene el parámetro es el nivel de confianza del intervalo.
Utilice el intervalo de confianza para evaluar la estimación del coeficiente de la población para cada término en el modelo.
Por ejemplo, con un nivel de confianza de 95 %, se puede estar un 95 % seguro de que el intervalo de confianza contiene el valor del coeficiente para la población. El intervalo de confianza ayuda a evaluar la significancia práctica de los resultados. Utilice el conocimiento especializado para determinar si el intervalo de confianza incluye valores que tienen significancia práctica para su situación. Si el intervalo es demasiado amplio para ser útil, considere aumentar el tamaño de la muestra.
El valor Z es una estadística de prueba que mide la relación entre el coeficiente y su error estándar.
Minitab utiliza el valor Z para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de los términos y el modelo. La prueba es exacta cuando el tamaño de la muestra es lo suficientemente grande como para que la distribución de los coeficientes de la muestra siga una distribución normal.
Un valor z lo suficientemente lejano a 0 indica que la estimación del coeficiente es suficientemente grande y precisa para ser estadísticamente diferente a 0. En cambio, un valor z cercano a 0 indica que la estimación del coeficiente es demasiado pequeña o demasiado imprecisa para tener la seguridad de que el término tiene un efecto en la puntuación de riesgo.
El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.