Utilice Regresión ortogonal, también conocida como regresión de Deming, para determinar si dos instrumentos o métodos proveen mediciones comparables. La regresión ortogonal examina la relación lineal entre dos variables continuas: una respuesta (Y) y un predictor (X). A diferencia de la regresión lineal simple (regresión de mínimos cuadrados), la respuesta y el predictor en la regresión ortogonal contienen error de medición. En la regresión simple, solo la variable de respuesta contiene error de medición. Si usted utiliza regresión simple para determinar la comparabilidad cuando ambas variables contienen errores de medición, los resultados dependen de las variables que los cálculos presuponen que no tienen error de medición. La regresión ortogonal aborda este problema de modo que los roles de las variables tengan poca influencia en los resultados.
Por ejemplo, un ingeniero de una empresa de equipos médicos desea determinar si el nuevo monitor de presión arterial de la empresa es equivalente a un modelo similar que es fabricado por otra empresa.
Para realizar la regresión ortogonal, elija .
Si usted tiene un predictor continuo, pero este no contiene error de medición, utilice Gráfica de línea ajustada.