Tabla Análisis de varianza para Gráfica de línea ajustada binaria

Encuentre definiciones y ayuda para interpretar cada uno de los estadísticos incluidos en la tabla Análisis de varianza.

GL

El total de grados de libertad (GL) es la cantidad de información en los datos. El análisis utiliza esa información para estimar los valores de los coeficientes. El total de GL es 1 menos que el número de filas en los datos. Los GL de un término muestran cuántos coeficientes usa ese término. Aumentar el número de términos en el modelo agrega más coeficientes al modelo, lo que reduce los GL para el error. Los GL para el error son los grados de libertad restantes que no se usan en el modelo.

Nota

Para un diseño factorial de 2 niveles o un diseño de Plackett-Burman, si un diseño tiene puntos centrales, entonces un GL es para la prueba de curvatura. Si el término para puntos centrales está en el modelo, la fila para curvatura es parte del modelo. Si el término para puntos centrales no está en el modelo, la fila para curvatura es parte del error que se utiliza para probar los términos que están en el modelo. En los diseños de superficie de respuesta y de cribado definitivo, usted puede estimar los términos cuadráticos, por lo que la prueba de curvatura no es necesaria.

Desv. ajust.

Las desviaciones ajustadas son medidas de la variación para los diferentes componentes del modelo. El orden de los predictores en el modelo no afecta el cálculo de las desviaciones ajustadas. Minitab separa la desviación en diferentes componentes que describen la desviación de las diferentes fuentes.

Regresión
La desviación ajustada para el modelo de regresión cuantifica la diferencia entre el modelo actual y el modelo completo.
Término
La desviación ajustada para un término cuantifica la diferencia entre un modelo con ese término y el modelo completo.
Error
La desviación ajustada para el error cuantifica la desviación que el modelo no explica.
Total
La desviación ajustada total es la suma de la desviación ajustada para el modelo y la desviación ajustada para el error. La desviación ajustada total cuantifica la desviación total en los datos.

Interpretación

Minitab utiliza las desviaciones ajustadas para calcular el valor p de un término. Minitab también utiliza las desviaciones ajustadas para calcular el estadístico R2 de desviación. Por lo general, usted interpreta los valores p y el estadístico R2 en lugar de las desviaciones.

Media ajust.

La desviación media ajustada mide la cantidad de desviación que un término o modelo explica por cada grado de libertad. El cálculo de la desviación media ajustada para cada término presupone que todos los demás términos están en el modelo.

Interpretación

Minitab utiliza el valor de chi-cuadrada para calcular el valor p de un término. Por lo general, usted interpreta los valores p en lugar de los mínimos cuadrados ajustados.

Chi-cuadrada

Cada término de la tabla ANOVA tiene un valor de chi-cuadrada. El valor de chi-cuadrada es el estadístico de prueba que determina si un término o modelo tiene asociación con la respuesta.

Interpretación

Minitab utiliza el estadístico de chi-cuadrada para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de los términos y el modelo. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula. Un estadístico de chi-cuadrada lo suficientemente grande da como resultado un valor p pequeño, lo que indica que el término o el modelo es estadísticamente significativo.

Valor p – Regresión

El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Interpretación

Para determinar si los datos proporcionan evidencia de que por lo menos uno de los coeficientes del modelo de regresión es diferente de 0, compare el valor p de la regresión con el nivel de significancia para evaluar la hipótesis nula. La hipótesis nula para el valor p de la regresión es que todos los coeficientes de los términos incluidos en el modelo de regresión son 0. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que por lo menos un coeficiente es diferente de 0 cuando todos los coeficientes son 0.
Valor p ≤ α: Por lo menos un coeficiente es diferente de 0
Si el valor p es menor que o igual al nivel de significancia, usted puede concluir que por lo menos un coeficiente es diferente de 0.
Valor p > α: No existe suficiente evidencia para concluir que por lo menos un coeficiente es diferente de 0.
Si el valor p es mayor que el nivel de significancia, usted no puede concluir que por lo menos un coeficiente es diferente de 0. Convendría que ajuste un nuevo modelo.

Valor p – Término

El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Interpretación

Para determinar si la asociación entre la variable de respuesta y la variable predictora es estadísticamente significativa, compare el valor p del término con el nivel de significancia para evaluar la hipótesis nula. La hipótesis nula es que el coeficiente de la variable predictora es igual a cero, lo que indica que no hay asociación entre la variable predictora y la variable de respuesta. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que existe una asociación cuando no hay una asociación real.
Valor p ≤ α: La asociación es estadísticamente significativa
Si el valor p es menor que o igual al nivel de significancia, usted puede concluir que hay una asociación estadísticamente significativa entre la variable de respuesta y la variable predictora.
Valor p > α: La asociación no es estadísticamente significativa
Si el valor p es mayor que el nivel de significancia, usted no puede concluir que hay una asociación estadísticamente significativa entre la variable de respuesta y la variable predictora.