Revisión general de Regresión Random Forests®

Nota

Este comando está disponible con el Módulo de análisis predictivo. Haga doble clic aquí para obtener información sobre cómo activar el módulo.

Utilice Regresión Random Forests® para crear un modelo de predicción de alto rendimiento para una respuesta continua con muchas variables predictoras continuas y categóricas. La Regresión Random Forests® combina información de muchos árboles CART® para ofrecer un avance sustancial en la tecnología de minería de datos.

Regresión Random Forests® proporciona información para una amplia gama de aplicaciones, incluido el control de calidad de fabricación, el descubrimiento de fármacos, la detección de fraudes, la puntuación de crédito y la predicción de abandonos. Utilice los resultados para identificar variables importantes, para identificar grupos en los datos con características deseables y para pronosticar valores de respuesta para nuevas observaciones. Por ejemplo, un investigador de mercado puede utilizar Regresión Random Forests® para identificar a los clientes que tienen tasas de respuesta más altas a iniciativas específicas y pronosticar esas tasas de respuesta.

Regresión CART® es una buena herramienta de análisis exploratorio de datos y proporciona un modelo fácil de entender para identificar predictores importantes rápidamente. Sin embargo, después de la exploración inicial con Regresión CART®, considere Regresión TreeNet® o Regresión Random Forests® como un paso de seguimiento necesario.

Los resultados de Regresión Random Forests® incluye diagramas de importancia relativa de variables y una gráfica de valores reales vs. ajustados. Estas gráficas le ayudan a evaluar si las variables del modelo predicen las clases de respuesta con alta exactitud y le ayudan a identificar los predictores más importantes para la exactitud de la predicción. Esta información es útil cuando se desea controlar la configuración que permite un resultado óptimo de producción.

El método fue desarrollado por Leo Breiman y Adele Cutler de la Universidad de California, Berkeley.

Dónde encontrar este análisis

Para realizar un Regresión Random Forests®, elija Módulo de análisis predictivo > Regresión Random Forests®.

Cuándo utilizar un análisis alterno

Si desea probar un modelo de regresión paramétrica con una variable de respuesta continua, utilice Ajustar modelo de regresión.

Para análisis más detallados, Minitab ofrece análisis Regresión TreeNet® y Regresión CART® con el Módulo de análisis predictivo. Haga doble clic aquí para obtener información sobre cómo activar el módulo.