La curva ROC representa la tasa de verdaderos positivos (TPR), también conocida como potencia, en el eje Y. La curva ROC representa la tasa de falsos positivos (FPR), también conocida como error de tipo 1, en el eje X. El área bajo una curva ROC indica si el modelo es un buen clasificador.
Interpretación
Para los árboles de clasificación, los valores del área bajo la curva ROC normalmente varían de 0.5 a 1. Valores más grandes indican un mejor modelo de clasificación. Cuando el modelo puede separar perfectamente las clases, el área bajo la curva es 1. Cuando el modelo no puede separar las clases mejor que una asignación aleatoria, el área bajo la curva es 0.5. La línea de puntos roja indica el caso de asignación aleatoria.