Este comando está disponible con el Módulo de análisis predictivo. Haga clic aquí para obtener más información sobre cómo activar el módulo.
Cada fila de la tabla muestra los estadísticos del error para el porcentaje dado de residuos. El porcentaje del cuadrado medio del error (MSE) que proviene de los residuos más grandes es generalmente mayor que el porcentaje de los otros dos estadísticos. El MSE utiliza los cuadrados de los errores en los cálculos, así que las observaciones más extremas normalmente tienen mayor influencia en el estadístico. Las grandes diferencias entre el porcentaje de error para MSE y las otras dos medidas pueden indicar que el modelo es más sensible a la selección de las funciones base con el criterio R-cuadrado o el criterio de desviación absoluta media.
Cuando se utiliza una técnica de validación, los resultados incluyen estadísticas independientes para los datos de entrenamiento y para los datos de prueba. Puede comparar los estadísticos para examinar el rendimiento relativo del modelo en los datos de entrenamiento y en nuevos datos. Los estadísticos de prueba suelen ser una mejor medida de cómo será el rendimiento del modelo con nuevos datos.
Un patrón posible es que un pequeño porcentaje de los residuos explique gran parte del error en los datos. Por ejemplo, en la tabla siguiente, el tamaño total del conjunto de datos es de aproximadamente 4400. Desde la perspectiva del MSE, eso indica que el 1% de los datos representan aproximadamente el 13% del error. En ese caso, los 31 casos que aportan la mayor parte del error al modelo pueden representar la oportunidad más natural de mejorar el modelo. Encontrar una manera de mejorar los ajustes para esos casos conduce a un aumento relativamente grande en el rendimiento general del modelo.
Esta condición también puede indicar que usted puede tener mayor confianza en los regiones del modelo que no incluyen casos con los errores más grandes. Debido a que la mayor parte del error proviene de un pequeño número de casos, los ajustes para los otros casos son relativamente más exactos.
% de los residuos más grandes | ||||||||
---|---|---|---|---|---|---|---|---|
Entrenamiento | Prueba | |||||||
Conteo | % MSE | % MAD | % MAPE | Conteo | % MSE | % MAD | % MAPE | |
1.0 | 31 | 13.2824 | 4.9997 | 8.0885 | 14 | 21.6989 | 6.9082 | 9.0517 |
2.0 | 62 | 21.3764 | 8.9374 | 12.9910 | 27 | 31.9396 | 11.6377 | 14.0987 |
2.5 | 77 | 24.7125 | 10.6967 | 14.9989 | 33 | 35.7935 | 13.6106 | 16.1761 |
3.0 | 93 | 27.9315 | 12.4817 | 17.0128 | 40 | 39.8022 | 15.7838 | 18.4925 |
4.0 | 123 | 33.2979 | 15.6372 | 20.4671 | 53 | 45.8259 | 19.4124 | 22.4744 |
5.0 | 154 | 38.1707 | 18.6937 | 23.7785 | 66 | 50.8291 | 22.7194 | 25.9526 |
7.5 | 231 | 47.9001 | 25.4954 | 31.0104 | 98 | 59.7000 | 29.6264 | 33.2548 |
10.0 | 307 | 55.3764 | 31.4216 | 37.0787 | 131 | 66.4339 | 35.7333 | 39.2610 |
15.0 | 461 | 66.7462 | 41.8167 | 47.2740 | 196 | 75.4853 | 45.6703 | 48.6658 |
20.0 | 614 | 74.8066 | 50.5429 | 55.5443 | 261 | 81.6292 | 53.8603 | 56.3489 |