Especificar las opciones para Analizar respuesta binaria para diseño de cribado definitivo

Estadísticas > DOE > Cribado > Analizar respuesta binaria > Opciones

Especifique las opciones que se utilizarán para analizar el diseño de cribado.

Ponderaciones

En Ponderaciones, ingrese una columna numérica de ponderaciones para realizar la regresión ponderada. Las ponderaciones deben ser mayores que o iguales a cero. La columna de ponderaciones debe tener el mismo número de filas que la columna de respuesta. Para obtener más información sobre cómo determinar la ponderación adecuada, vaya a Regresión ponderada.

Nivel de confianza para todos los intervalos

Ingrese el nivel de confianza para los intervalos de confianza de los coeficientes y los valores ajustados. Si usted utiliza la función de enlace logit, este nivel de confianza también es el nivel de confianza para los intervalos de confianza de las relaciones de probabilidades.

Por lo general, un nivel de confianza de 95% funciona adecuadamente. Un nivel de confianza de 95 % indica que si se tomaron 100 muestras aleatorias de la población, los intervalos de confianza para aproximadamente 95 de las muestras incluirían el parámetro que es estimado por el intervalo. Para un conjunto determinado de datos, un nivel de confianza más bajo produce un intervalo más estrecho y un nivel de confianza más alto produce un intervalo más amplio.

Nota

Para mostrar los intervalos de confianza de los coeficientes y los valores ajustados, debe ir al cuadro de diálogo secundario Resultados y en Presentación de resultados, seleccione Tablas ampliadas.

Tipo de intervalo de confianza

Usted puede seleccionar un intervalo bilateral o un límite unilateral. Para el mismo nivel de confianza, un límite está más cerca de la estimación de punto que el intervalo. El límite superior no proporciona un valor inferior probable. El límite inferior no proporciona un valor superior probable.
Bilateral
Utilice un intervalo de confianza bilateral para estimar valores probables tanto inferiores como superiores para la probabilidad del evento.
Borde inferior
Utilice un límite de confianza inferior para estimar un valor probable más bajo para la probabilidad del evento.
Borde superior
Utilice un límite de confianza superior para estimar un valor probable más alto para la probabilidad del evento.

Residuos para diagnósticos

Los residuos de desviación y de Pearson ayudan a identificar patrones en las gráficas de residuos y valores atípicos. Las observaciones a las que el modelo no se ajusta adecuadamente tienen residuos de desviación y de Pearson altos. Minitab calcula los valores de los residuos para cada patrón distinto de factor/covariable.
  • Desviación: Los residuos de desviación son una medida de qué tan bien el modelo predice la observación. Los residuos de desviación se suelen preferir para una regresión logística que utiliza la función de enlace logit, porque la distribución de los residuos es más parecida a la distribución de los residuos de los modelos de mínimos cuadrados. La función de enlace logit es la función de enlace más común.
  • Pearson: Los residuos de Pearson también son una medida de qué tan bien el modelo predice la observación. Un enfoque común para identificar valores atípicos es graficar los residuos de Pearson según el orden de las observaciones en la hoja de trabajo.

Prueba para tabla de ANOVA

Seleccione la prueba para la tabla ANOVA.
  • Prueba de Wald: La prueba de Wald predeterminada funciona adecuadamente en la mayoría de los casos.
  • Prueba de relación de verosimilitud: Use esta opción si prefiere la prueba de relación de verosimilitud.
Tipo de desviación
Seleccione una desviación para calcular lo valores de chi-cuadrada y los valores p. Es más común utilizar la desviación ajustada. Utilice la desviación secuencial para determinar la significancia de los términos por el orden en que ingresan al modelo.
  • Ajustado (tipo III): Mide la reducción en la desviación para cada término con respecto a un modelo que contiene todos los términos restantes.
  • Secuencial (tipo I): Mide la reducción en la desviación cuando un término se agrega a un modelo que solo contiene los términos que van antes de él.

Número de grupos para la prueba de Hosmer-Lemeshow

Ingrese el número de grupos para la prueba de Hosmer-Lemeshow. Si usted deja este valor en blanco, Minitab intenta crear 10 grupos de igual tamaño. Diez grupos funcionan adecuadamente para la mayoría de los conjuntos de datos.

La prueba de Hosmer-Lemeshow es una prueba de bondad de ajuste que evalúa el ajuste del modelo al comparar las frecuencias observadas y esperadas. La prueba divide los datos en grupos por sus probabilidades estimadas desde la más baja hasta la más alta y luego realiza una prueba de chi-cuadrada para determinar si las frecuencias observadas y esperadas son significativamente diferentes. Si el número de patrones únicos de factores/covariables es pequeño o grande, convendría cambiar el número de grupos. Por ejemplo, usted puede usar menos grupos para aumentar los valores esperados dentro de los grupos. Alternativamente, puede usar más grupos para ver mayores detalles en la comparación de los valores observados y esperados. Hosmer y Lemeshow sugieren usar un mínimo de 6 grupos1.

Tabla de medias:

Usted puede mostrar las medias para los efectos principales, los efectos principales y las interacciones de dos factores o todos los efectos principales e interacciones del modelo en la salida. Alternativamente, puede mostrar las medias de un subconjunto de estos términos o ningún término. Los términos cuadráticos incluidos en el modelo afectan las medias ajustadas de los efectos principales y las interacciones.

Si selecciona Términos especificados, utilice los botones de flecha para mover términos de una lista a la otra. Términos disponibles muestra todos los términos cuyas medias se pueden mostrar. Minitab muestra las medias de los términos en Términos seleccionados. Seleccione uno o más términos en una de las listas y luego haga clic en un botón de flecha. Las flechas dobles mueven todos los términos de una lista a la otra. También puede hacer doble clic en un término para moverlo. Si un efecto principal o interacción que espera ver en la lista no aparece, tendrá que agregarlo al modelo.

1 D.W. Hosmer y S. Lemeshow (2000). Applied Logistic Regression. 2nd ed. John Wiley & Sons, Inc.