Para calcular la predicción, invierta la función de enlace del modelo. Las funciones inversas se indican en esta tabla.
Función de enlace | Fórmula para la predicción |
---|---|
Logit | |
Normit | |
Gompit |
Término | Description |
---|---|
exp(·) | la función exponencial |
Φ(·) | la función de distribución acumulada de la distribución normal |
X' | la transpuesta del vector de puntos para el que se hará la predicción |
el vector de los coeficientes estimados |
Donde es de los datos de entrenamiento sólo cuando hay un conjunto de datos de prueba para la validación.
Término | Description |
---|---|
1, for the binomial and Poisson models | |
xi | the vector of a design point |
the transpose of xi | |
X | the design matrix |
W | the weight matrix |
the first derivative of the link function evaluated at | |
the predicted mean response | |
the predicted probability for the design point in a binary logistic model | |
the inverse cumulative distribution function of the standard normal distribution for the predicted probability in a binary logistic model | |
the probability density function of the standard normal distribution |
Los límites de confianza utilizan el método de aproximación de Wald. La siguiente es la fórmula para un intervalo de confianza bilateral de 100(1 − α)%:
Término | Description |
---|---|
la inversa de la función de enlace evaluada en x | |
la transpuesta del vector de los predictores | |
el vector de los coeficientes estimados | |
el valor de la función de distribución acumulada inversa para la distribución normal evaluada en | |
α | el nivel de significancia |
X | la matriz de diseño |
W | la matriz de ponderación |
1, para los modelos binomiales |