El total de grados de libertad (GL) es la cantidad de información en los datos. El análisis utiliza esa información para estimar los valores de parámetros de población desconocidos. Este valor está determinado por el número de observaciones en la muestra. Los GL de un término muestran qué tanta información usa ese término. Si incrementa el tamaño de la muestra, obtendrá más información sobre la población, con lo cual aumenta el total de GL. Al aumentar el número de términos en el modelo, se utiliza más información, con lo cual se reducen los GL disponibles para estimar la variabilidad de las estimaciones de los parámetros.
El Total de GL depende del número de observaciones. En un diseño de mezcla, el Total de GL es el número de observaciones menos 1. Los GL de un término son el número de coeficientes estimados para ese término. Los GL del error residual son todo lo que queda después de explicar todos los términos del modelo.
Las sumas secuenciales de los cuadrados son medidas de variación de las diferentes fuentes especificadas para el modelo. A diferencia de las sumas ajustadas de los cuadrados, las sumas secuenciales de los cuadrados dependen del orden en el que los términos se incluyen en el modelo. En la tabla Análisis de varianza, Minitab separa las sumas secuenciales de los cuadrados en diferentes fuentes como se indica a continuación.
Minitab no utiliza la suma secuencial de los cuadrados para calcular los valores p cuando usted analiza un diseño, pero puede usar las sumas secuenciales de los cuadrados cuando usted utilice Ajustar modelo de regresión o Ajustar modelo lineal general. Por lo general, los valores p y el estadístico R2 se interpretan de acuerdo con las sumas ajustadas de los cuadrados.
Las sumas ajustadas de los cuadrados son medidas de variación de las diferentes fuentes especificadas para el modelo. El orden de los predictores en el modelo no afecta el cálculo de las sumas ajustadas de los cuadrados. En la tabla Análisis de varianza, Minitab separa las sumas ajustadas de los cuadrados en diferentes fuentes como se indica a continuación.
Minitab utiliza las sumas ajustadas de los cuadrados para calcular los valores p en la tabla ANOVA. Minitab también utiliza las sumas de los cuadrados para calcular el estadístico R2. Por lo general, se interpretan los valores p y el estadístico R2 en lugar de las sumas de los cuadrados.
Los cuadrados medios ajustados miden qué tanta variación explica un término o un modelo, asumiendo que todos los demás términos están en el modelo, independientemente de su orden en el modelo. A diferencia de las sumas ajustadas de los cuadrados, los cuadrados medios ajustados consideran los grados de libertad.
El cuadrado medio ajustado del error (también llamado MSE o s2) es la varianza alrededor de los valores ajustados.
Minitab utiliza los cuadrados medios ajustados para calcular los valores p en la tabla ANOVA. Minitab también utiliza los cuadrados medios ajustados para calcular el estadístico de R2 ajustado. Generalmente, se interpretan los valores p y el estadístico de R2 ajustado en lugar de los cuadrados medios ajustados.
Un valor F aparece para cada prueba en la tabla Análisis de varianza.
Minitab utiliza el valor F para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de la prueba. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula. Un valor F lo suficientemente grande indica significancia estadística.
Si desea usar el valor F para determinar si puede rechazar la hipótesis nula, compare el valor F con su valor crítico. Puede calcular el valor crítico en Minitab o buscar el valor crítico en una tabla de la distribución F en la mayoría de los libros de estadística. Para obtener más información sobre cómo usar Minitab para calcular el valor crítico, vaya a Uso de la función de distribución acumulada inversa (ICDF) y haga clic en "Usar la ICDF para calcular los valores críticos".
El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.
Si el valor p es mayor que el nivel de significancia, usted no puede concluir que el modelo explica la variación en la respuesta. Convendría que ajuste un nuevo modelo.
El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.
Minitab no muestra los valores p de los efectos principales en los modelos para experimentos de mezclas debido a la dependencia entre los componentes. Específicamente, porque las proporciones de los componentes deben sumar una cantidad o proporción fija y si se cambia un solo componente, se fuerza un cambio en los otros. Además, el modelo para un experimento de mezclas no tiene un término de intersección, porque los términos de componentes individuales se comportan como términos de intersección.
El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula. Minitab realiza automáticamente la prueba de falta de ajuste para el error puro cuando los datos contienen réplicas, que son múltiples observaciones con valores idénticos de X. Las réplicas representan el "error puro", porque solo la variación aleatoria puede causar diferencias entre los valores de respuesta observados.
Si el valor p es mayor que el nivel de significancia, la prueba no detecta ninguna falta de ajuste.