S representa la desviación estándar de la distancia entre los valores de datos y los valores ajustados. S se mide en las unidades de la respuesta.
Utilice S para evaluar qué tan bien el modelo describe la respuesta. S se mide en las unidades de la variable de respuesta y representa la distancia que separa a los valores de los datos de los valores ajustados. Mientras más bajo sea el valor de S, mejor describirá el modelo la respuesta. Sin embargo, un valor de S bajo no indica por sí solo que el modelo cumple con los supuestos del modelo. Debe examinar las gráficas de residuos para verificar los supuestos.
Por ejemplo, usted trabaja para una compañía de chips de patatas que examina los factores que afectan el número de chips desmenuzados por contenedor. Usted reduce el modelo a los predictores significativos y determina que S se calcula como 1.79. Este resultado indica que la desviación estándar de los puntos de datos alrededor de los valores ajustados es 1.79. Si está comparando modelos, los valores que son menores de 1.79 indican un mejor ajuste y los valores mayores indican un peor ajuste.
R2 es el porcentaje de variación en la respuesta que se explica por el modelo. Se calcula como 1 menos la relación de la suma de los cuadrados del error (que es la variación que no es explicada por el modelo) a la suma total de los cuadrados (que es la variación total en el modelo).
Utilice el R2 para determinar qué tan bien se ajusta el modelo a los datos Mientras mayor sea el valor de R2, mejor se ajustará el modelo a los datos. R2 siempre está entre 0% y 100%.
R2 siempre aumenta cuando se agregan más predictores a un modelo. Por ejemplo, el mejor modelo de cinco predictores siempre tendrá un R2 que será al menos tan alto como el mejor modelo de cuatro predictores. Por lo tanto, R2 es más útil cuando se comparan modelos del mismo tamaño.
Las muestras pequeñas no proporcionan una estimación precisa de la fuerza de la relación entre la respuesta y los predictores. Por ejemplo, si necesita que R2 sea más preciso, debe utilizar una muestra más grande (generalmente, 40 o más).
Los estadísticos de bondad de ajuste son simplemente una medida de qué tan bien se ajusta el modelo a los datos. Incluso cuando un modelo tenga un valor deseable, usted deberá revisar las gráficas de residuos para verificar que el modelo cumpla con los supuestos del modelo.
El R2 ajustado es el porcentaje de la variación en la respuesta que es explicada por el modelo, ajustado para el número de predictores en el modelo relativo al número de observaciones. El R2 ajustado se calcula como 1 menos la relación del cuadrado medio del error (MSE) con el cuadrado medio total (CM Total).
Utilice R2 ajustado cuando desee comparar modelos que tengan diferentes números de predictores. R2 siempre aumenta cuando se agrega un predictor al modelo, incluso cuando no haya una mejora real en el modelo. El valor de R2 ajustado incorpora el número de predictores del modelo para ayudar a elegir el modelo correcto.
Modelo | % Patata | Tasa de enfriamiento | Temp. de cocción | R2 | R2 ajustado |
---|---|---|---|---|---|
1 | X | 52 | = | ||
1 | X | X | 63 | 62 | |
3 | X | X | X | = | = |
El primer modelo produce un R2 de más de 50%. El segundo modelo agrega una tasa de enfriamiento al modelo. El R2 ajustado se incrementa, lo cual indica que la tasa de enfriamiento mejora el modelo. El tercer modelo, que agrega un temperatura de cocción, aumenta el R2 pero no el R2 ajustado. Estos resultados indican que la temperatura de cocción no mejora el modelo. Con base en estos resultados, considere eliminar la temperatura de cocción del modelo.