Los grados de libertad total (GL) son la cantidad de información en los datos. El análisis utiliza esa información para estimar los valores de los parámetros de población infinita. El GL total está determinado por el número de observaciones en la muestra. El GL de un término muestra cuánta información utiliza el término. Si incrementa el tamaño de la muestra, obtendrá más información sobre la población, con lo cual aumentan los GL total. Si incrementa el número de términos en su modelo, utilizará más información, con lo cual disminuyen los GL disponibles para estimar la variabilidad de los estimados de parámetros.
Las sumas ajustadas de los cuadrados son medidas de variación para los diferentes componentes del modelo. El orden de los predictores en el modelo no afecta el cálculo de las sumas ajustadas de los cuadrados. En la tabla Análisis de varianza, Minitab separa las sumas de los cuadrados en diferentes componentes que describen la variación que se debe a fuentes diferentes.
Minitab utiliza las sumas ajustadas de los cuadrados para calcular el valor p de un término. Minitab también utiliza las sumas de los cuadrados para calcular el estadístico R2. Por lo general, se interpretan los valores p y el estadístico R2 en lugar de las sumas de los cuadrados.
Los cuadrados medios (CM) ajustados miden hasta qué punto una variación explica un término o un modelo, asumiendo que todos los demás términos estén en el modelo, independientemente del orden en el que hayan sido ingresados. A diferencia de las sumas ajustadas de los cuadrados, los cuadrados medios ajustados consideran los grados de libertad.
El cuadrado medio ajustado del error (también llamado MSE o s2) es la varianza alrededor de los valores ajustados.
Minitab utiliza el cuadrado medio ajustado para calcular el valor p de un término. Minitab también utiliza los cuadrados medios ajustados para calcular el estadístico de R2 ajustado. Generalmente, se interpretan los valores p y el estadístico de R2 ajustado en lugar de los cuadrados medios ajustados.
En la tabla Análisis de varianza aparece un valor F para cada término. El valor F es el estadístico de prueba usado para determinar si el término está asociado con la respuesta.
Minitab utiliza el valor F para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística de los términos y el modelo. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.
Un valor F suficientemente grande indica que el término o el modelo es significativo.
Si desea usar el valor F para determinar si puede rechazar la hipótesis nula, compare el valor F con su valor crítico. Puede calcular el valor crítico en Minitab o buscar el valor crítico en una tabla de la distribución F en la mayoría de los libros de estadística. Para obtener más información sobre cómo usar Minitab para calcular el valor crítico, vaya a Uso de la función de distribución acumulada inversa (ICDF) y haga clic en "Usar la ICDF para calcular los valores críticos".
El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.
Utilice la tabla Medias para entender las diferencias estadísticamente significativas entre los niveles de los factores en sus datos. La media de cada grupo proporciona una estimación de cada media de población. Busque diferencias entre las medias de grupo para los términos que son estadísticamente significativos.