El análisis de capacidad normal calcula la desviación estándar dentro de los subgrupos y la desviación estándar general.
El método utilizado para estimar σcorto plazo depende del tamaño del subgrupo.
donde:
Si cambia el método predeterminado y elige no utilizar la constante de eliminación de sesgo, la σcorto plazo se estima mediante Sp.
Término | Description |
---|---|
d | Grados de libertad de Sp= Σ (ni- 1) |
Xij | jésima observación del iésimo subgrupo |
X̅i | Media del iésimo subgrupo |
ni | Número de observaciones en el iésimo subgrupo |
C4(d+1) | Constante de eliminación de sesgo |
Γ(·) | Función gamma |
donde:
Si todos los valores de n son iguales:
Término | Description |
---|---|
ri | Rango del iésimo subgrupo |
d2 (ni) | Una constante de eliminación de sesgo leída en una tabla (para más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
d3 (ni) | Una constante de eliminación de sesgo leída en una tabla (para más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Si cambia la configuración predeterminada y no utiliza la constante de eliminación de sesgo, la σcorto plazo se estima mediante Σ Si / número de subgrupos.
Término | Description |
---|---|
C4(ni) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
Si | Desviación estándar del subgrupo i |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Término | Description |
---|---|
Ri | El iésimo rango móvil |
w | El número de observaciones utilizadas en el rango móvil. El valor predeterminado es w = 2 |
d2(w) | Una constante de eliminación de sesgo leída en una tabla (para más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
donde:
Término | Description |
---|---|
MRi | El iésimo rango móvil |
MRbar̅ra | Mediana del MRi |
w | El número de observaciones utilizadas en el rango móvil. El valor predeterminado es w = 2 |
d4(w) | Una constante de eliminación de sesgo leída en una tabla (para más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
Si cambia la configuración predeterminada y no utiliza la constante de eliminación de sesgo, σcorto plazo se estima mediante
Término | Description |
---|---|
di | Diferencias sucesivas |
C4(ni) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
C4'(ni) | Constante de eliminación de sesgo ≈ c4(ni) (para más información, véase la sección Constante de eliminación de sesgo c4'()) |
N | Número total de observaciones |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Por opción predeterminada, Minitab no utiliza la constante de eliminación de sesgo cuando se estima σgeneral. σgeneral se estima mediante S. Si desea estimar la desviación estándar general usando la constate de eliminación de sesgo, puede cambiar esta opción en el cuadro de diálogo secundario Estimaciones cuando realice el análisis de capacidad. Si quiere que Minitab siempre utilice la constante de eliminación de sesgo por opción predeterminada, elija y seleccione las opciones adecuadas.
Término | Description |
---|---|
xij | La jésima observación en el iésimo subgrupo |
x̅ | Media del proceso |
ni | Número de observaciones en el iésimo subgrupo |
C4 (N) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
N (o Σ ni) | Número total de observaciones |
La transformación de Box-Cox estima un valor de lambda, como se muestra en la siguiente tabla, que minimiza la desviación estándar de una variable transformada estandarizada. La transformación resultante es Yλ cuando λ ҂ 0 y ln Y cuando λ = 0.
El método de Box-Cox busca entre muchos tipos de transformaciones. La siguiente tabla muestra algunas transformaciones comunes donde Y' es la transformación de los datos Y.
Valor de lambda (λ) | Transformación |
---|---|
La transformación de Johnson selecciona de manera óptima una de las tres familias de distribución para transformar los datos a fin de que sigan una distribución normal.
Familia de Johnson | Función de transformación | Rango |
---|---|---|
SB | γ + η ln [(x – ε) / (λ + ε – x)] | η, λ > 0, –∞ < γ < ∞ , –∞ < ε < ∞, ε < x < ε + λ |
SL | γ + η ln (x – ε) | η > 0, –∞ < γ < ∞, –∞ < ε < ∞, ε < x |
SU | γ + η Sinh–1 [(x – ε) / λ] , donde
Senh–1(x) = ln [x + sqrt (1 + x2)] |
η, λ > 0, –∞ < γ < ∞, –∞ < ε < ∞, –∞ < x < ∞ |
El algoritmo utiliza el siguiente procedimiento:
Término | Description |
---|---|
SB | La distribución de la familia de Johnson con la variable limitada (B) |
SL | La distribución de la familia de Johnson con la variable lognormal (L) |
SU | La distribución de la familia de Johnson con la variable ilimitada (U) |
Para obtener más información sobre la transformación de Johnson, véase Chou, et al.1 Minitab reemplaza la prueba de normalidad de Shapiro-Wilks utilizada en ese texto con la prueba de Anderson-Darling.
Para obtener información sobre la grásfica de probabilidad, percentiles y sus intervalos de confianza, vaya a Métodos y fórmulas para las distribuciones en Identificación de distribución individual.
d2(N) es el valor esperado del rango de N observaciones de una población normal con desviación estándar = 1. Por lo tanto, si r es el rango de una muestra de N observaciones de una distribución normal con desviación estándar = σ, entonces E(r) = d2(N)σ.
d3(N) es la desviación estándar del rango de N observaciones de una población normal con σ = 1. Por lo tanto, si r es el rango de una muestra de N observaciones de una distribución normal con una desviación estándar = σ, entonces desv.est.(r) = d3(N)σ.
Utilice la siguiente tabla para hallar una constante de eliminación de sesgo para un valor dado, N. (Para determinar el valor de N, consulte la fórmula del estadístico de interés.)
N | d2(N) | d3(N) | d4(N) |
---|---|---|---|
2 | 1.128 | 0.8525 | 0.954 |
3 | 1.693 | 0.8884 | 1.588 |
4 | 2.059 | 0.8798 | 1.978 |
5 | 2.326 | 0.8641 | 2.257 |
6 | 2.534 | 0.8480 | 2.472 |
7 | 2.704 | 0.8332 | 2.645 |
8 | 2.847 | 0.8198 | 2.791 |
9 | 2.970 | 0.8078 | 2.915 |
10 | 3.078 | 0.7971 | 3.024 |
11 | 3.173 | 0.7873 | 3.121 |
12 | 3.258 | 0.7785 | 3.207 |
13 | 3.336 | 0.7704 | 3.285 |
14 | 3.407 | 0.7630 | 3.356 |
15 | 3.472 | 0.7562 | 3.422 |
16 | 3.532 | 0.7499 | 3.482 |
17 | 3.588 | 0.7441 | 3.538 |
18 | 3.640 | 0.7386 | 3.591 |
19 | 3.689 | 0.7335 | 3.640 |
20 | 3.735 | 0.7287 | 3.686 |
21 | 3.778 | 0.7242 | 3.730 |
22 | 3.819 | 0.7199 | 3.771 |
23 | 3.858 | 0.7159 | 3.811 |
24 | 3.895 | 0.7121 | 3.847 |
25 | 3.931 | 0.7084 | 3.883 |
N | d2(N) |
---|---|
26 | 3.964 |
27 | 3.997 |
28 | 4.027 |
29 | 4.057 |
30 | 4.086 |
31 | 4.113 |
32 | 4.139 |
33 | 4.165 |
34 | 4.189 |
35 | 4.213 |
36 | 4.236 |
37 | 4.259 |
38 | 4.280 |
39 | 4.301 |
40 | 4.322 |
41 | 4.341 |
42 | 4.361 |
43 | 4.379 |
44 | 4.398 |
45 | 4.415 |
46 | 4.433 |
47 | 4.450 |
48 | 4.466 |
49 | 4.482 |
50 | 4.498 |
Término | Description |
---|---|
Γ() | función gamma |
Utilice las siguientes tablas para hallar valores para la constante de eliminación de sesgo, c4'(), que se usa en las fórmulas para la raíz cuadrada del método MSSD para estimar sigma.
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
2 | 0.797850 | 41 | 0.990797 | 80 | 0.995215 |
3 | 0.871530 | 42 | 0.991013 | 81 | 0.995272 |
4 | 0.905763 | 43 | 0.991218 | 82 | 0.995328 |
5 | 0.925222 | 44 | 0.991415 | 83 | 0.995383 |
6 | 0.937892 | 45 | 0.991602 | 84 | 0.995436 |
7 | 0.946837 | 46 | 0.991782 | 85 | 0.995489 |
8 | 0.953503 | 47 | 0.991953 | 86 | 0.995539 |
9 | 0.958669 | 48 | 0.992118 | 87 | 0.995589 |
10 | 0.962793 | 49 | 0.992276 | 88 | 0.995638 |
11 | 0.966163 | 50 | 0.992427 | 89 | 0.995685 |
12 | 0.968968 | 51 | 0.992573 | 90 | 0.995732 |
13 | 0.971341 | 52 | 0.992713 | 91 | 0.995777 |
14 | 0.973375 | 53 | 0.992848 | 92 | 0.995822 |
15 | 0.975137 | 54 | 0.992978 | 93 | 0.995865 |
16 | 0.976679 | 55 | 0.993103 | 94 | 0.995908 |
17 | 0.978039 | 56 | 0.993224 | 95 | 0.995949 |
18 | 0.979249 | 57 | 0.993340 | 96 | 0.995990 |
19 | 0.980331 | 58 | 0.993452 | 97 | 0.996030 |
20 | 0.981305 | 59 | 0.993561 | 98 | 0.996069 |
21 | 0.982187 | 60 | 0.993666 | 99 | 0.996108 |
22 | 0.982988 | 61 | 0.993767 | 100 | 0.996145 |
23 | 0.983720 | 62 | 0.993866 | 101 | 0.996182 |
24 | 0.984391 | 63 | 0.993961 | 102 | 0.996218 |
25 | 0.985009 | 64 | 0.994053 | 103 | 0.996253 |
26 | 0.985579 | 65 | 0.994142 | 104 | 0.996288 |
27 | 0.986107 | 66 | 0.994229 | 105 | 0.996322 |
28 | 0.986597 | 67 | 0.994313 | 106 | 0.996356 |
29 | 0.987054 | 68 | 0.994395 | 107 | 0.996389 |
30 | 0.987480 | 69 | 0.994474 | 108 | 0.996421 |
31 | 0.987878 | 70 | 0.994551 | 109 | 0.996452 |
32 | 0.988252 | 71 | 0.994626 | 110 | 0.996483 |
33 | 0.988603 | 72 | 0.994699 | 111 | 0.996514 |
34 | 0.988934 | 73 | 0.994769 | 112 | 0.996544 |
35 | 0.989246 | 74 | 0.994838 | 113 | 0.996573 |
36 | 0.989540 | 75 | 0.994905 | 114 | 0.996602 |
37 | 0.989819 | 76 | 0.994970 | 115 | 0.996631 |
38 | 0.990083 | 77 | 0.995034 | 116 | 0.996658 |
39 | 0.990333 | 78 | 0.995096 | 117 | 0.996686 |
40 | 0.990571 | 79 | 0.995156 | 118 | 0.996713 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
119 | 0.996739 | 160 | 0.997541 | 201 | 0.998016 |
120 | 0.996765 | 161 | 0.997555 | 202 | 0.998025 |
121 | 0.996791 | 162 | 0.997570 | 203 | 0.998034 |
122 | 0.996816 | 163 | 0.997584 | 204 | 0.998043 |
123 | 0.996841 | 164 | 0.997598 | 205 | 0.998052 |
124 | 0.996865 | 165 | 0.997612 | 206 | 0.998061 |
125 | 0.996889 | 166 | 0.997625 | 207 | 0.998070 |
126 | 0.996913 | 167 | 0.997639 | 208 | 0.998078 |
127 | 0.996936 | 168 | 0.997652 | 209 | 0.998087 |
128 | 0.996959 | 169 | 0.997665 | 210 | 0.998095 |
129 | 0.996982 | 170 | 0.997678 | 211 | 0.998104 |
130 | 0.997004 | 171 | 0.997691 | 212 | 0.998112 |
131 | 0.997026 | 172 | 0.997703 | 213 | 0.998120 |
132 | 0.997047 | 173 | 0.997716 | 214 | 0.998128 |
133 | 0.997069 | 174 | 0.997728 | 215 | 0.998137 |
134 | 0.997089 | 175 | 0.997741 | 216 | 0.998145 |
135 | 0.997110 | 176 | 0.997753 | 217 | 0.998152 |
136 | 0.997130 | 177 | 0.997765 | 218 | 0.998160 |
137 | 0.997150 | 178 | 0.997776 | 219 | 0.998168 |
138 | 0.997170 | 179 | 0.997788 | 220 | 0.998176 |
139 | 0.997189 | 180 | 0.997800 | 221 | 0.998184 |
140 | 0.997209 | 181 | 0.997811 | 222 | 0.998191 |
141 | 0.997227 | 182 | 0.997822 | 223 | 0.998199 |
142 | 0.997246 | 183 | 0.997834 | 224 | 0.998206 |
143 | 0.997264 | 184 | 0.997845 | 225 | 0.998214 |
144 | 0.997282 | 185 | 0.997856 | 226 | 0.998221 |
145 | 0.997300 | 186 | 0.997866 | 227 | 0.998228 |
146 | 0.997318 | 187 | 0.997877 | 228 | 0.998235 |
147 | 0.997335 | 188 | 0.997888 | 229 | 0.998242 |
148 | 0.997352 | 189 | 0.997898 | 230 | 0.998250 |
149 | 0.997369 | 190 | 0.997909 | 231 | 0.998257 |
150 | 0.997386 | 191 | 0.997919 | 232 | 0.998263 |
151 | 0.997402 | 192 | 0.997929 | 233 | 0.998270 |
152 | 0.997419 | 193 | 0.997939 | 234 | 0.998277 |
153 | 0.997435 | 194 | 0.997949 | 235 | 0.998284 |
154 | 0.997450 | 195 | 0.997959 | 236 | 0.998291 |
155 | 0.997466 | 196 | 0.997969 | 237 | 0.998297 |
156 | 0.997481 | 197 | 0.997978 | 238 | 0.998304 |
157 | 0.997497 | 198 | 0.997988 | 239 | 0.998311 |
158 | 0.997512 | 199 | 0.997997 | 240 | 0.998317 |
159 | 0.997526 | 200 | 0.998007 | 241 | 0.998323 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
242 | 0.998330 | 283 | 0.998553 | 324 | 0.998720 |
243 | 0.998336 | 284 | 0.998558 | 325 | 0.998723 |
244 | 0.998342 | 285 | 0.998562 | 326 | 0.998727 |
245 | 0.998349 | 286 | 0.998567 | 327 | 0.998730 |
246 | 0.998355 | 287 | 0.998571 | 328 | 0.998734 |
247 | 0.998361 | 288 | 0.998576 | 329 | 0.998737 |
248 | 0.998367 | 289 | 0.998580 | 330 | 0.998740 |
249 | 0.998373 | 290 | 0.998585 | 331 | 0.998744 |
250 | 0.998379 | 291 | 0.998589 | 332 | 0.998747 |
251 | 0.998385 | 292 | 0.998593 | 333 | 0.998751 |
252 | 0.998391 | 293 | 0.998598 | 334 | 0.998754 |
253 | 0.998397 | 294 | 0.998602 | 335 | 0.998757 |
254 | 0.998403 | 295 | 0.998606 | 336 | 0.998761 |
255 | 0.998408 | 296 | 0.998611 | 337 | 0.998764 |
256 | 0.998414 | 297 | 0.998615 | 338 | 0.998767 |
257 | 0.998420 | 298 | 0.998619 | 339 | 0.998770 |
258 | 0.998425 | 299 | 0.998623 | 340 | 0.998774 |
259 | 0.998431 | 300 | 0.998627 | 341 | 0.998777 |
260 | 0.998436 | 301 | 0.998632 | 342 | 0.998780 |
261 | 0.998442 | 302 | 0.998636 | 343 | 0.998783 |
262 | 0.998447 | 303 | 0.998640 | 344 | 0.998786 |
263 | 0.998453 | 304 | 0.998644 | 345 | 0.998790 |
264 | 0.998458 | 305 | 0.998648 | 346 | 0.998793 |
265 | 0.998463 | 306 | 0.998652 | 347 | 0.998796 |
266 | 0.998469 | 307 | 0.998656 | 348 | 0.998799 |
267 | 0.998474 | 308 | 0.998660 | 349 | 0.998802 |
268 | 0.998479 | 309 | 0.998664 | 350 | 0.998805 |
269 | 0.998484 | 310 | 0.998668 | 351 | 0.998808 |
270 | 0.998489 | 311 | 0.998671 | 352 | 0.998811 |
271 | 0.998495 | 312 | 0.998675 | 353 | 0.998814 |
272 | 0.998500 | 313 | 0.998679 | 354 | 0.998817 |
273 | 0.998505 | 314 | 0.998683 | 355 | 0.998820 |
274 | 0.998510 | 315 | 0.998687 | 356 | 0.998823 |
275 | 0.998515 | 316 | 0.998690 | 357 | 0.998826 |
276 | 0.998519 | 317 | 0.998694 | 358 | 0.998829 |
277 | 0.998524 | 318 | 0.998698 | 359 | 0.998832 |
278 | 0.998529 | 319 | 0.998701 | 360 | 0.998835 |
279 | 0.998534 | 320 | 0.998705 | 361 | 0.998837 |
280 | 0.998539 | 321 | 0.998709 | 362 | 0.998840 |
281 | 0.998544 | 322 | 0.998712 | 363 | 0.998843 |
282 | 0.998548 | 323 | 0.998716 | 364 | 0.998846 |
k | c4'(k) | k | c4'(k) | k | c4'(k) |
---|---|---|---|---|---|
365 | 0.998849 | 411 | 0.998963 | 457 | 0.999054 |
366 | 0.998851 | 412 | 0.998965 | 458 | 0.999056 |
367 | 0.998854 | 413 | 0.998967 | 459 | 0.999058 |
368 | 0.998857 | 414 | 0.998970 | 460 | 0.999060 |
369 | 0.998860 | 415 | 0.998972 | 461 | 0.999061 |
370 | 0.998862 | 416 | 0.998974 | 462 | 0.999063 |
371 | 0.998865 | 417 | 0.998976 | 463 | 0.999065 |
372 | 0.998868 | 418 | 0.998978 | 464 | 0.999067 |
373 | 0.998871 | 419 | 0.998980 | 465 | 0.999068 |
374 | 0.998873 | 420 | 0.998982 | 466 | 0.999070 |
375 | 0.998876 | 421 | 0.998985 | 467 | 0.999072 |
376 | 0.998879 | 422 | 0.998987 | 468 | 0.999073 |
377 | 0.998881 | 423 | 0.998989 | 469 | 0.999075 |
378 | 0.998884 | 424 | 0.998991 | 470 | 0.999077 |
379 | 0.998886 | 425 | 0.998993 | 471 | 0.999078 |
380 | 0.998889 | 426 | 0.998995 | 472 | 0.999080 |
381 | 0.998892 | 427 | 0.998997 | 473 | 0.999082 |
382 | 0.998894 | 428 | 0.998999 | 474 | 0.999084 |
383 | 0.998897 | 429 | 0.999001 | 475 | 0.999085 |
384 | 0.998899 | 430 | 0.999003 | 476 | 0.999087 |
385 | 0.998902 | 431 | 0.999005 | 477 | 0.999088 |
386 | 0.998904 | 432 | 0.999007 | 478 | 0.999090 |
387 | 0.998907 | 433 | 0.999009 | 479 | 0.999092 |
388 | 0.998909 | 434 | 0.999011 | 480 | 0.999093 |
389 | 0.998912 | 435 | 0.999013 | 481 | 0.999095 |
390 | 0.998914 | 436 | 0.999015 | 482 | 0.999097 |
391 | 0.998917 | 437 | 0.999017 | 483 | 0.999098 |
392 | 0.998919 | 438 | 0.999019 | 484 | 0.999100 |
393 | 0.998921 | 439 | 0.999021 | 485 | 0.999101 |
394 | 0.998924 | 440 | 0.999023 | 486 | 0.999103 |
395 | 0.998926 | 441 | 0.999025 | 487 | 0.999104 |
396 | 0.998929 | 442 | 0.999027 | 488 | 0.999106 |
397 | 0.998931 | 443 | 0.999028 | 489 | 0.999108 |
398 | 0.998933 | 444 | 0.999030 | 490 | 0.999109 |
399 | 0.998936 | 445 | 0.999032 | 491 | 0.999111 |
400 | 0.998938 | 446 | 0.999034 | 492 | 0.999112 |
401 | 0.998940 | 447 | 0.999036 | 493 | 0.999114 |
402 | 0.998943 | 448 | 0.999038 | 494 | 0.999115 |
403 | 0.998945 | 449 | 0.999040 | 495 | 0.999117 |
404 | 0.998947 | 450 | 0.999042 | 496 | 0.999118 |
405 | 0.998950 | 451 | 0.999043 | 497 | 0.999120 |
406 | 0.998952 | 452 | 0.999045 | 498 | 0.999121 |
407 | 0.998954 | 453 | 0.999047 | 499 | 0.999123 |
408 | 0.998956 | 454 | 0.999049 | 500 | 0.999124 |
409 | 0.998959 | 455 | 0.999051 | ||
410 | 0.998961 | 456 | 0.999052 |