Por opción predeterminada, el análisis de capacidad normal para múltiples variables calcula la desviación estándar dentro de los subgrupos y la desviación estándar general utilizando los métodos descritos abajo. Sin embargo, usted también puede elegir analizar la variación entre los subgrupos/dentro de los subgrupos para este análisis. Para obtener información sobre los métodos que se utilizan para estimar la desviación estándar subgrupos/corto plazo, vaya a Cálculo de la desviación estándar.
El método utilizado para estimar σcorto plazo depende del tamaño del subgrupo.
donde:
Si cambia el método predeterminado y elige no utilizar la constante de eliminación de sesgo, la σcorto plazo se estima mediante Sp.
Término | Description |
---|---|
d | Grados de libertad de Sp= Σ (ni- 1) |
Xij | jésima observación en el iésimo subgrupo |
X̅i | Media del iésimo subgrupo |
ni | Número de observaciones en el iésimo subgrupo |
C4(d+1) | Constante de eliminación de sesgo |
Γ(.) | Función gamma |
donde:
Si todos los valores de n son iguales:
Término | Description |
---|---|
ri | Rango del iésimo subgrupo |
d2 (ni) | Una constante de eliminación de sesgo leída en una tabla (para obtener más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
d3 (ni) | Una constante de eliminación de sesgo leída en una tabla (para obtener más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Si cambia la configuración predeterminada y no utiliza la constante de eliminación de sesgo, la σcorto plazo se estima mediante Σ Si / número de subgrupos.
Término | Description |
---|---|
c4(ni) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
Si | Desviación estándar del subgrupo i |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Término | Description |
---|---|
Ri | El iésimo rango móvil |
w | El número de observaciones utilizadas en el rango móvil. El valor predeterminado es w = 2 |
d2(w) | Una constante de eliminación de sesgo leída en una tabla (para obtener más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4() |
donde:
Término | Description |
---|---|
MRi | El iésimo rango móvil |
MRbar̅ra | Mediana del MRi |
w | El número de observaciones utilizadas en el rango móvil. El valor predeterminado es w = 2 |
d4(w) | Una constante de eliminación de sesgo leída en una tabla (para más información, véase la sección Constantes de eliminación de sesgo d2(), d3() y d4()) |
Si cambia la configuración predeterminada y no utiliza la constante de eliminación de sesgo, la σcorto plazo se estima mediante
Término | Description |
---|---|
di | Diferencias sucesivas |
c4(ni) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
c4(ni)' | Constante de eliminación de sesgo ≈ c4(ni). Para obtener más información, véase la sección Constante de eliminación de sesgo c4'() |
N | Número total de observaciones |
ni | Número de observaciones en el iésimo subgrupo |
donde:
Por opción predeterminada, Minitab no utiliza la constante de eliminación de sesgo cuando estima σgeneral. σgeneral se estima mediante S. Si usted desea estimar la desviación estándar general utilizando la constante de eliminación de riesgo, cambie los valores de configuración predeterminados en el cuadro de diálogo secundario Estimar.
Término | Description |
---|---|
Xij | La jésima observación en el iésimo subgrupo |
X̅ | Media del proceso |
ni | Número de observaciones en el iésimo subgrupo |
C4 (N) | Constante de eliminación de sesgo (como se definió para la desviación estándar agrupada) |
N (o Σ ni) | Número total de observaciones |
La transformación de Box-Cox estima un valor de lambda, como se muestra en la siguiente tabla, que minimiza la desviación estándar de una variable transformada estandarizada. La transformación resultante es Yλ cuando λ ҂ 0 y ln Y cuando λ = 0.
El método de Box-Cox busca entre muchos tipos de transformaciones. La siguiente tabla muestra algunas transformaciones comunes donde Y' es la transformación de los datos Y.
Valor de lambda (λ) | Transformación |
---|---|
d2(N) es el valor esperado del rango de N observaciones de una población normal con desviación estándar = 1. Por lo tanto, si r es el rango de una muestra de N observaciones de una distribución normal con desviación estándar = σ, entonces E(r) = d2(N)σ.
d3(N) es la desviación estándar del rango de N observaciones de una población normal con σ = 1. Por lo tanto, si r es el rango de una muestra de N observaciones de una distribución normal con una desviación estándar = σ, entonces desv.est.(r) = d3(N)σ.
Utilice la siguiente tabla para hallar una constante de eliminación de sesgo para un valor dado, N. (Para determinar el valor de N, consulte la fórmula del estadístico de interés.)
N | d2(N) | d3(N) | d4(N) |
---|---|---|---|
2 | 1.128 | 0.8525 | 0.954 |
3 | 1.693 | 0.8884 | 1.588 |
4 | 2.059 | 0.8798 | 1.978 |
5 | 2.326 | 0.8641 | 2.257 |
6 | 2.534 | 0.8480 | 2.472 |
7 | 2.704 | 0.8332 | 2.645 |
8 | 2.847 | 0.8198 | 2.791 |
9 | 2.970 | 0.8078 | 2.915 |
10 | 3.078 | 0.7971 | 3.024 |
11 | 3.173 | 0.7873 | 3.121 |
12 | 3.258 | 0.7785 | 3.207 |
13 | 3.336 | 0.7704 | 3.285 |
14 | 3.407 | 0.7630 | 3.356 |
15 | 3.472 | 0.7562 | 3.422 |
16 | 3.532 | 0.7499 | 3.482 |
17 | 3.588 | 0.7441 | 3.538 |
18 | 3.640 | 0.7386 | 3.591 |
19 | 3.689 | 0.7335 | 3.640 |
20 | 3.735 | 0.7287 | 3.686 |
21 | 3.778 | 0.7242 | 3.730 |
22 | 3.819 | 0.7199 | 3.771 |
23 | 3.858 | 0.7159 | 3.811 |
24 | 3.895 | 0.7121 | 3.847 |
25 | 3.931 | 0.7084 | 3.883 |
N | d2(N) |
---|---|
26 | 3.964 |
27 | 3.997 |
28 | 4.027 |
29 | 4.057 |
30 | 4.086 |
31 | 4.113 |
32 | 4.139 |
33 | 4.165 |
34 | 4.189 |
35 | 4.213 |
36 | 4.236 |
37 | 4.259 |
38 | 4.280 |
39 | 4.301 |
40 | 4.322 |
41 | 4.341 |
42 | 4.361 |
43 | 4.379 |
44 | 4.398 |
45 | 4.415 |
46 | 4.433 |
47 | 4.450 |
48 | 4.466 |
49 | 4.482 |
50 | 4.498 |
Término | Description |
---|---|
Γ() | función gamma |
Utilice las siguientes tablas para hallar valores para la constante de eliminación de sesgo, c4'(), que se usa en las fórmulas para la raíz cuadrada del método MSSD para estimar sigma.
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
2 | 0.797850 | 41 | 0.990797 | 80 | 0.995215 |
3 | 0.871530 | 42 | 0.991013 | 81 | 0.995272 |
4 | 0.905763 | 43 | 0.991218 | 82 | 0.995328 |
5 | 0.925222 | 44 | 0.991415 | 83 | 0.995383 |
6 | 0.937892 | 45 | 0.991602 | 84 | 0.995436 |
7 | 0.946837 | 46 | 0.991782 | 85 | 0.995489 |
8 | 0.953503 | 47 | 0.991953 | 86 | 0.995539 |
9 | 0.958669 | 48 | 0.992118 | 87 | 0.995589 |
10 | 0.962793 | 49 | 0.992276 | 88 | 0.995638 |
11 | 0.966163 | 50 | 0.992427 | 89 | 0.995685 |
12 | 0.968968 | 51 | 0.992573 | 90 | 0.995732 |
13 | 0.971341 | 52 | 0.992713 | 91 | 0.995777 |
14 | 0.973375 | 53 | 0.992848 | 92 | 0.995822 |
15 | 0.975137 | 54 | 0.992978 | 93 | 0.995865 |
16 | 0.976679 | 55 | 0.993103 | 94 | 0.995908 |
17 | 0.978039 | 56 | 0.993224 | 95 | 0.995949 |
18 | 0.979249 | 57 | 0.993340 | 96 | 0.995990 |
19 | 0.980331 | 58 | 0.993452 | 97 | 0.996030 |
20 | 0.981305 | 59 | 0.993561 | 98 | 0.996069 |
21 | 0.982187 | 60 | 0.993666 | 99 | 0.996108 |
22 | 0.982988 | 61 | 0.993767 | 100 | 0.996145 |
23 | 0.983720 | 62 | 0.993866 | 101 | 0.996182 |
24 | 0.984391 | 63 | 0.993961 | 102 | 0.996218 |
25 | 0.985009 | 64 | 0.994053 | 103 | 0.996253 |
26 | 0.985579 | 65 | 0.994142 | 104 | 0.996288 |
27 | 0.986107 | 66 | 0.994229 | 105 | 0.996322 |
28 | 0.986597 | 67 | 0.994313 | 106 | 0.996356 |
29 | 0.987054 | 68 | 0.994395 | 107 | 0.996389 |
30 | 0.987480 | 69 | 0.994474 | 108 | 0.996421 |
31 | 0.987878 | 70 | 0.994551 | 109 | 0.996452 |
32 | 0.988252 | 71 | 0.994626 | 110 | 0.996483 |
33 | 0.988603 | 72 | 0.994699 | 111 | 0.996514 |
34 | 0.988934 | 73 | 0.994769 | 112 | 0.996544 |
35 | 0.989246 | 74 | 0.994838 | 113 | 0.996573 |
36 | 0.989540 | 75 | 0.994905 | 114 | 0.996602 |
37 | 0.989819 | 76 | 0.994970 | 115 | 0.996631 |
38 | 0.990083 | 77 | 0.995034 | 116 | 0.996658 |
39 | 0.990333 | 78 | 0.995096 | 117 | 0.996686 |
40 | 0.990571 | 79 | 0.995156 | 118 | 0.996713 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
119 | 0.996739 | 160 | 0.997541 | 201 | 0.998016 |
120 | 0.996765 | 161 | 0.997555 | 202 | 0.998025 |
121 | 0.996791 | 162 | 0.997570 | 203 | 0.998034 |
122 | 0.996816 | 163 | 0.997584 | 204 | 0.998043 |
123 | 0.996841 | 164 | 0.997598 | 205 | 0.998052 |
124 | 0.996865 | 165 | 0.997612 | 206 | 0.998061 |
125 | 0.996889 | 166 | 0.997625 | 207 | 0.998070 |
126 | 0.996913 | 167 | 0.997639 | 208 | 0.998078 |
127 | 0.996936 | 168 | 0.997652 | 209 | 0.998087 |
128 | 0.996959 | 169 | 0.997665 | 210 | 0.998095 |
129 | 0.996982 | 170 | 0.997678 | 211 | 0.998104 |
130 | 0.997004 | 171 | 0.997691 | 212 | 0.998112 |
131 | 0.997026 | 172 | 0.997703 | 213 | 0.998120 |
132 | 0.997047 | 173 | 0.997716 | 214 | 0.998128 |
133 | 0.997069 | 174 | 0.997728 | 215 | 0.998137 |
134 | 0.997089 | 175 | 0.997741 | 216 | 0.998145 |
135 | 0.997110 | 176 | 0.997753 | 217 | 0.998152 |
136 | 0.997130 | 177 | 0.997765 | 218 | 0.998160 |
137 | 0.997150 | 178 | 0.997776 | 219 | 0.998168 |
138 | 0.997170 | 179 | 0.997788 | 220 | 0.998176 |
139 | 0.997189 | 180 | 0.997800 | 221 | 0.998184 |
140 | 0.997209 | 181 | 0.997811 | 222 | 0.998191 |
141 | 0.997227 | 182 | 0.997822 | 223 | 0.998199 |
142 | 0.997246 | 183 | 0.997834 | 224 | 0.998206 |
143 | 0.997264 | 184 | 0.997845 | 225 | 0.998214 |
144 | 0.997282 | 185 | 0.997856 | 226 | 0.998221 |
145 | 0.997300 | 186 | 0.997866 | 227 | 0.998228 |
146 | 0.997318 | 187 | 0.997877 | 228 | 0.998235 |
147 | 0.997335 | 188 | 0.997888 | 229 | 0.998242 |
148 | 0.997352 | 189 | 0.997898 | 230 | 0.998250 |
149 | 0.997369 | 190 | 0.997909 | 231 | 0.998257 |
150 | 0.997386 | 191 | 0.997919 | 232 | 0.998263 |
151 | 0.997402 | 192 | 0.997929 | 233 | 0.998270 |
152 | 0.997419 | 193 | 0.997939 | 234 | 0.998277 |
153 | 0.997435 | 194 | 0.997949 | 235 | 0.998284 |
154 | 0.997450 | 195 | 0.997959 | 236 | 0.998291 |
155 | 0.997466 | 196 | 0.997969 | 237 | 0.998297 |
156 | 0.997481 | 197 | 0.997978 | 238 | 0.998304 |
157 | 0.997497 | 198 | 0.997988 | 239 | 0.998311 |
158 | 0.997512 | 199 | 0.997997 | 240 | 0.998317 |
159 | 0.997526 | 200 | 0.998007 | 241 | 0.998323 |
N | c4'(N) | N | c4'(N) | N | c4'(N) |
---|---|---|---|---|---|
242 | 0.998330 | 283 | 0.998553 | 324 | 0.998720 |
243 | 0.998336 | 284 | 0.998558 | 325 | 0.998723 |
244 | 0.998342 | 285 | 0.998562 | 326 | 0.998727 |
245 | 0.998349 | 286 | 0.998567 | 327 | 0.998730 |
246 | 0.998355 | 287 | 0.998571 | 328 | 0.998734 |
247 | 0.998361 | 288 | 0.998576 | 329 | 0.998737 |
248 | 0.998367 | 289 | 0.998580 | 330 | 0.998740 |
249 | 0.998373 | 290 | 0.998585 | 331 | 0.998744 |
250 | 0.998379 | 291 | 0.998589 | 332 | 0.998747 |
251 | 0.998385 | 292 | 0.998593 | 333 | 0.998751 |
252 | 0.998391 | 293 | 0.998598 | 334 | 0.998754 |
253 | 0.998397 | 294 | 0.998602 | 335 | 0.998757 |
254 | 0.998403 | 295 | 0.998606 | 336 | 0.998761 |
255 | 0.998408 | 296 | 0.998611 | 337 | 0.998764 |
256 | 0.998414 | 297 | 0.998615 | 338 | 0.998767 |
257 | 0.998420 | 298 | 0.998619 | 339 | 0.998770 |
258 | 0.998425 | 299 | 0.998623 | 340 | 0.998774 |
259 | 0.998431 | 300 | 0.998627 | 341 | 0.998777 |
260 | 0.998436 | 301 | 0.998632 | 342 | 0.998780 |
261 | 0.998442 | 302 | 0.998636 | 343 | 0.998783 |
262 | 0.998447 | 303 | 0.998640 | 344 | 0.998786 |
263 | 0.998453 | 304 | 0.998644 | 345 | 0.998790 |
264 | 0.998458 | 305 | 0.998648 | 346 | 0.998793 |
265 | 0.998463 | 306 | 0.998652 | 347 | 0.998796 |
266 | 0.998469 | 307 | 0.998656 | 348 | 0.998799 |
267 | 0.998474 | 308 | 0.998660 | 349 | 0.998802 |
268 | 0.998479 | 309 | 0.998664 | 350 | 0.998805 |
269 | 0.998484 | 310 | 0.998668 | 351 | 0.998808 |
270 | 0.998489 | 311 | 0.998671 | 352 | 0.998811 |
271 | 0.998495 | 312 | 0.998675 | 353 | 0.998814 |
272 | 0.998500 | 313 | 0.998679 | 354 | 0.998817 |
273 | 0.998505 | 314 | 0.998683 | 355 | 0.998820 |
274 | 0.998510 | 315 | 0.998687 | 356 | 0.998823 |
275 | 0.998515 | 316 | 0.998690 | 357 | 0.998826 |
276 | 0.998519 | 317 | 0.998694 | 358 | 0.998829 |
277 | 0.998524 | 318 | 0.998698 | 359 | 0.998832 |
278 | 0.998529 | 319 | 0.998701 | 360 | 0.998835 |
279 | 0.998534 | 320 | 0.998705 | 361 | 0.998837 |
280 | 0.998539 | 321 | 0.998709 | 362 | 0.998840 |
281 | 0.998544 | 322 | 0.998712 | 363 | 0.998843 |
282 | 0.998548 | 323 | 0.998716 | 364 | 0.998846 |
k | c4'(k) | k | c4'(k) | k | c4'(k) |
---|---|---|---|---|---|
365 | 0.998849 | 411 | 0.998963 | 457 | 0.999054 |
366 | 0.998851 | 412 | 0.998965 | 458 | 0.999056 |
367 | 0.998854 | 413 | 0.998967 | 459 | 0.999058 |
368 | 0.998857 | 414 | 0.998970 | 460 | 0.999060 |
369 | 0.998860 | 415 | 0.998972 | 461 | 0.999061 |
370 | 0.998862 | 416 | 0.998974 | 462 | 0.999063 |
371 | 0.998865 | 417 | 0.998976 | 463 | 0.999065 |
372 | 0.998868 | 418 | 0.998978 | 464 | 0.999067 |
373 | 0.998871 | 419 | 0.998980 | 465 | 0.999068 |
374 | 0.998873 | 420 | 0.998982 | 466 | 0.999070 |
375 | 0.998876 | 421 | 0.998985 | 467 | 0.999072 |
376 | 0.998879 | 422 | 0.998987 | 468 | 0.999073 |
377 | 0.998881 | 423 | 0.998989 | 469 | 0.999075 |
378 | 0.998884 | 424 | 0.998991 | 470 | 0.999077 |
379 | 0.998886 | 425 | 0.998993 | 471 | 0.999078 |
380 | 0.998889 | 426 | 0.998995 | 472 | 0.999080 |
381 | 0.998892 | 427 | 0.998997 | 473 | 0.999082 |
382 | 0.998894 | 428 | 0.998999 | 474 | 0.999084 |
383 | 0.998897 | 429 | 0.999001 | 475 | 0.999085 |
384 | 0.998899 | 430 | 0.999003 | 476 | 0.999087 |
385 | 0.998902 | 431 | 0.999005 | 477 | 0.999088 |
386 | 0.998904 | 432 | 0.999007 | 478 | 0.999090 |
387 | 0.998907 | 433 | 0.999009 | 479 | 0.999092 |
388 | 0.998909 | 434 | 0.999011 | 480 | 0.999093 |
389 | 0.998912 | 435 | 0.999013 | 481 | 0.999095 |
390 | 0.998914 | 436 | 0.999015 | 482 | 0.999097 |
391 | 0.998917 | 437 | 0.999017 | 483 | 0.999098 |
392 | 0.998919 | 438 | 0.999019 | 484 | 0.999100 |
393 | 0.998921 | 439 | 0.999021 | 485 | 0.999101 |
394 | 0.998924 | 440 | 0.999023 | 486 | 0.999103 |
395 | 0.998926 | 441 | 0.999025 | 487 | 0.999104 |
396 | 0.998929 | 442 | 0.999027 | 488 | 0.999106 |
397 | 0.998931 | 443 | 0.999028 | 489 | 0.999108 |
398 | 0.998933 | 444 | 0.999030 | 490 | 0.999109 |
399 | 0.998936 | 445 | 0.999032 | 491 | 0.999111 |
400 | 0.998938 | 446 | 0.999034 | 492 | 0.999112 |
401 | 0.998940 | 447 | 0.999036 | 493 | 0.999114 |
402 | 0.998943 | 448 | 0.999038 | 494 | 0.999115 |
403 | 0.998945 | 449 | 0.999040 | 495 | 0.999117 |
404 | 0.998947 | 450 | 0.999042 | 496 | 0.999118 |
405 | 0.998950 | 451 | 0.999043 | 497 | 0.999120 |
406 | 0.998952 | 452 | 0.999045 | 498 | 0.999121 |
407 | 0.998954 | 453 | 0.999047 | 499 | 0.999123 |
408 | 0.998956 | 454 | 0.999049 | 500 | 0.999124 |
409 | 0.998959 | 455 | 0.999051 | ||
410 | 0.998961 | 456 | 0.999052 |
Utilice la siguiente tabla para hallar un valor para γN, 1 -α empleado en el cálculo del intervalo de confianza para el Nivel Z y luego utilice la segunda ecuación para obtener el valor exacto de γN, 1 -α.
1 -α | |||||
N | 0.800 | 0.850 | 0.900 | 0.950 | 0.990 |
5 | 3.544 | 4.138 | 4.961 | 6.350 | 9.750 |
6 | 3.485 | 4.078 | 4.903 | 6.300 | 9.636 |
7 | 3.443 | 4.035 | 4.861 | 6.260 | 9.567 |
8 | 3.413 | 4.003 | 4.829 | 6.229 | 9.520 |
9 | 3.390 | 3.979 | 4.804 | 6.204 | 9.484 |
10 | 3.372 | 3.960 | 4.783 | 6.183 | 9.457 |
12 | 3.345 | 3.931 | 4.753 | 6.152 | 9.416 |
14 | 3.326 | 3.911 | 4.732 | 6.130 | 9.387 |
16 | 3.312 | 3.986 | 4.716 | 6.113 | 9.365 |
18 | 3.301 | 3.884 | 4.703 | 6.099 | 9.348 |
20 | 3.293 | 3.875 | 4.693 | 6.089 | 9.335 |
25 | 3.278 | 3.858 | 4.675 | 6.069 | 9.310 |
30 | 3.268 | 3.848 | 4.664 | 6.056 | 9.294 |
35 | 3.261 | 3.840 | 4.655 | 6.047 | 9.282 |
40 | 3.255 | 3.834 | 4.649 | 6.040 | 9.274 |
50 | 3.248 | 3.826 | 4.640 | 6.031 | 9.262 |
60 | 3.243 | 3.821 | 4.634 | 6.024 | 9.253 |
80 | 3.237 | 3.814 | 4.627 | 6.016 | 9.244 |
100 | 3.233 | 3.810 | 4.623 | 6.011 | 9.238 |
>100 | 3.219 | 3.794 | 4.605 | 5.991 | 9.210 |
Cuando N y 1 - a no aparezcan en la tabla, utilice el método de extrapolación para obtener el valor de γN, 1 -α. Por ejemplo,