Utilice la distribución exponencial para modelar el tiempo entre eventos en un proceso continuo de Poisson. Se presupone que eventos independientes ocurren a una tasa constante.
Esta distribución tiene una amplia gama de aplicaciones, que incluyen el análisis de fiabilidad de productos y sistemas, teorías de colas y cadenas de Markov.
Para la distribución exponencial de 1 parámetro, el valor umbral es cero y la distribución se define por su parámetro de escala. Para la distribución exponencial de 1 parámetro, el parámetro de escala es igual a la media.
Una propiedad importante de la distribución exponencial es que no tiene memoria. La probabilidad de un evento no depende de los ensayos anteriores. Por lo tanto, la tasa de ocurrencia se mantiene constante.
La propiedad de ausencia de memoria indica que la vida útil restante de un componente no depende de su antigüedad actual. Por ejemplo, ensayos aleatorios de lanzamientos al aire de una moneda demuestran la propiedad de ausencia de memoria. Un sistema que experimenta un desgaste natural y, por lo tanto, tiene más probabilidades de fallar más tarde en su vida útil no es un sistema sin memoria.