Especificar el método de cálculo, el método de prueba para términos de efecto fijo y los resultados que se mostrarán. Los cambios que haga en los valores predeterminados se mantendrán vigentes hasta que los cambie de nuevo, incluso después de salir de Minitab.
- Método de estimación
-
Puede seleccionar uno o Máxima verosimilitud restringida (REML)Máxima verosimilitud (ML). Por lo general, se usa Máxima verosimilitud restringida (REML) porque el estimador de componentes de varianza de REML es aproximadamente imparcial, mientras que el estimador de ML está sesgado. Sin embargo, el sesgo se vuelve más pequeño cuando los tamaños de las muestras son grandes.
Utilícelo Máxima verosimilitud (ML) si necesita probar si un modelo anidado con un número menor de términos de efectos fijos es tan bueno como su modelo de referencia correspondiente que tiene más términos de efectos fijos, dado que ambos modelos tienen el mismo número de términos aleatorios y la misma estructura de varianza de error. Específicamente, deje que ser la probabilidad logarítmica negativa 2 del modelo completo, y la -2 log verosimilitud del modelo más pequeño.
Bajo la hipótesis nula, asintóticamente, sigue una distribución de chi-cuadrada con grados de libertad iguales a la diferencia en el número de términos de efecto fijo entre el modelo de referencia y el modelo anidado. Puede utilizar la prueba de relación de verosimilitud para determinar si un subconjunto de términos de efecto fijo puede eliminarse del modelo de referencia.
Para obtener más información sobre la prueba de razón de verosimilitud de parámetros fijos en un modelo de efectos mixtos, véase B. T. West, K.B. Welch y A.T. Gałecki (2007). Linear Mixed Models: A Practical Guide Using Statistical Software, First Edition. Chapman and Hall/CRC (34–36).
- Método de prueba para efectos fijos
-
Por lo general, se utiliza Aproximación de Kenward-Roger porque los cálculos incluyen un ajuste que reduce el sesgo de tamaños de muestra pequeños. También puede utilizar Aproximación de Satterthwaite. En general, cuanto más grande sea el tamaño de la muestra, menor será la diferencia entre los dos métodos.
- Presentación de resultados
-
- Información del factor
- Mostrar un resumen de los nombres de los factores, si los factores son aleatorios, el número de niveles y los niveles.
- Historial de iteraciones
- Mostrar el número de iteraciones hasta que el algoritmo converge y el valor de la –2 log verosimilitud en cada iteración.
- Componentes de la varianza
- Mostrar las estimaciones de los componentes de la varianza.
- Matriz de varianzas-covarianzas de las estimaciones de los componentes de la varianza
- Mostrar la matriz de varianzas-covarianzas de las estimaciones de los componentes de la varianza.
- Pruebas de efectos fijos
- Mostrar pruebas de hipótesis acerca de si las medias en diferentes niveles de los efectos fijos son iguales.
- Predicciones de efectos aleatorios
- Mostrar los estadísticos de los términos aleatorios presentes en el modelo final, incluyendo la mejor predicción lineal insesgada (BLUP) para el efecto de nivel de un término aleatorio.
- Ecuación ajustada marginal
- Mostrar la ecuación para los valores ajustados marginales. Los ajustes marginales representan las respuestas medias en los niveles combinados de los factores fijos con los valores de covariable ingresados (si hay alguno). Los cálculos de los ajustes marginales no utilizan los niveles de factores aleatorios.
- Ecuación separada para cada conjunto de niveles de factor: Mostrar una ecuación separada para cada combinación de niveles de factor.
- Una sola ecuación: Mostrar una ecuación que incluya todos los niveles de todos los factores.
- Ecuación ajustada condicional
- Mostrar la ecuación para los valores ajustados condicionales. Los ajustes condicionales son los valores ajustados de los niveles de los factores aleatorios incluidos en los datos. Utilice los ajustes condicionales para explorar las diferencias entre los niveles específicos de los factores aleatorios incluidos en el estudio.
- Ecuación separada para cada conjunto de niveles de factor: Mostrar una ecuación separada para cada combinación de niveles de factor.
- Una sola ecuación: Mostrar una ecuación que incluya todos los niveles de todos los factores.
- Ajustes marginales y diagnósticos
-
- Solo para las observaciones poco comunes: Mostrar los valores ajustados marginales, los residuos marginales y los estadísticos de diagnóstico solo para las observaciones poco comunes.
- Para todas las observaciones: Mostrar los valores ajustados marginales, los residuos marginales y los estadísticos de diagnóstico para todas las observaciones.
- Ajustes condicionales y diagnósticos
-
- Solo para las observaciones poco comunes: Mostrar los valores ajustados condicionales, los residuos y los estadísticos de diagnóstico solo para las observaciones poco comunes.
- Para todas las observaciones: Mostrar los valores ajustados condicionales, los residuos y los estadísticos de diagnóstico para todas las observaciones.