Utilice la distribución exponencial para modelar el tiempo entre eventos en un proceso continuo de Poisson. Se presupone que eventos independientes ocurren a una tasa constante.
Esta distribución tiene una amplia gama de aplicaciones, que incluyen el análisis de fiabilidad de productos y sistemas, teorías de colas y cadenas de Markov.
Para la distribución exponencial de 1 parámetro, el valor umbral es cero y la distribución se define por su parámetro de escala. Para la distribución exponencial de 1 parámetro, el parámetro de escala es igual a la media.
Una propiedad importante de la distribución exponencial es que no tiene memoria. La probabilidad de un evento no depende de los ensayos anteriores. Por lo tanto, la tasa de ocurrencia se mantiene constante.
La propiedad de ausencia de memoria indica que la vida útil restante de un componente no depende de su antigüedad actual. Por ejemplo, ensayos aleatorios de lanzamientos al aire de una moneda demuestran la propiedad de ausencia de memoria. Un sistema que experimenta un desgaste natural y, por lo tanto, tiene más probabilidades de fallar más tarde en su vida útil no es un sistema sin memoria.
Utilice la distribución gamma para modelar valores de datos positivos que sean asimétricos a la derecha y mayores que 0. La distribución gamma se utiliza comúnmente en estudios de supervivencia para determinar la fiabilidad. Por ejemplo, la distribución gamma puede describir el tiempo que transcurre para que falle un componente eléctrico. La mayoría de los componentes eléctricos de un tipo particular fallará aproximadamente en el mismo momento, pero unos pocos tardarán más en fallar.
Cuando el parámetro de forma es un entero, la distribución gamma a veces se menciona como distribución de Erlang. La distribución de Erlang se utiliza frecuentemente en aplicaciones de teorías de colas.
Utilice la distribución logística para modelar distribuciones de datos que tengan colas más grandes y curtosis más alta que la distribución normal.
Utilice la distribución loglogística cuando el logaritmo de la variable esté distribuido logísticamente. Por ejemplo, la distribución loglogística se utiliza en modelos de crecimiento y para modelar respuestas binarias en campos como la bioestadística y la economía.
La distribución loglogística es una distribución continua que se define por sus parámetros de escala y ubicación. La distribución loglogística de 3 parámetros se define por sus parámetros de escala, ubicación y valor umbral.
La distribución loglogística también se conoce como distribución de Fisk.
Utilice la distribución lognormal si el logaritmo de la variable aleatoria está distribuida normalmente. Utilícese cuando las variables aleatorias sean mayores que 0. Por ejemplo, la distribución lognormal se usa para el análisis de fiabilidad y en aplicaciones financieras, como modelar el comportamiento de las acciones.
La distribución lognormal es una distribución continua que se define por sus parámetros de ubicación y escala. La distribución lognormal de 3 parámetros se define por sus parámetros de ubicación, escala y valor umbral.
La distribución normal es una distribución continua que se especifica por la media (μ) y la desviación estándar (σ). La media es el pico o centro de la curva en forma de campana. La desviación estándar determina la dispersión de la distribución.
La distribución normal es la distribución estadística más común debido a que la normalidad aproximada ocurre naturalmente en muchas situaciones de mediciones físicas, biológicas y sociales. Muchos análisis estadísticos presuponen que los datos provienen de poblaciones distribuidas normalmente.
La distribución de valor extremo más grande y la distribución de valor extremo más pequeño están estrechamente relacionadas. Por ejemplo, si X tiene una distribución de valor extremo más grande, entonces −X tiene una distribución de valor extremo más pequeño y viceversa.
La distribución de Weibull es una distribución versátil que se puede utilizar para modelar una amplia gama de aplicaciones en ingeniería, investigación médica, control de calidad, finanzas y climatología. Por ejemplo, la distribución se utiliza frecuentemente con análisis de fiabilidad para modelar datos de tiempo antes de falla. La distribución de Weibull también se utiliza para modelar datos asimétricos del proceso en el análisis de capacidad.
La distribución de Weibull se describe según los parámetros de forma, escala y valor umbral y también se conoce como la distribución de Weibull de 3 parámetros. El caso en el que el parámetro de valor umbral es cero se conoce como la distribución de Weibull de 2 parámetros. La distribución de Weibull de 2 parámetros se define solo para variables positivas. Una distribución de Weibull de 3 parámetros puede funcionar con ceros y datos negativos, pero todos los datos para una distribución de Weibull de 2 parámetros deben ser mayores que cero.
Dependiendo de los valores de sus parámetros, la distribución de Weibull puede adoptar varias formas.