Ejemplo de predicción con Clasificación TreeNet®

Nota

Este comando está disponible con el Módulo de análisis predictivo. Haga doble clic aquí para obtener información sobre cómo activar el módulo.

Un equipo de investigadores recopila y publica información detallada acerca de los factores que afectan a las cardiopatías. Las variables incluyen edad, sexo, niveles de colesterol, frecuencia cardíaca máxima, entre otras. Este ejemplo se basa en un conjunto de datos públicos que proporcionan información detallada acerca de la cardiopatía. Los datos originales provienen de archive.ics.uci.edu.

El investigador puede utilizar el modelo de árboles de clasificación con potenciación del gradiente para predecir las probabilidades de clase para nuevas observaciones.

Nota

En este ejemplo se utiliza el conjunto de datos de Ajustar modelo, pero la predicción también está disponible cuando se utiliza Descubrir predictores clave para crear el modelo.

  1. Complete el Ejemplo de Ajustar modelo con Clasificación TreeNet®.
  2. Haga clic en el botón Predecir al final de los resultados.
  3. En la lista desplegable, seleccione Ingresar valores individuales.
  4. Ingrese los siguientes valores. En este ejemplo se utilizan 2 valores para cada predictor, pero usted puede utilizar hasta 3 valores.
    Edad 35 35  
    Descansar la presión arterial 140 140  
    Colesterol 233 233  
    Frecuencia cardíaca máxima 150 165  
    Old Peak 2.3 2.3  
    Sexo Hombre Mujer  
    Tipo de dolor torácico 2 1  
    Azúcar en la sangre en ayunas Verdadero Verdadero  
    Rest ECG 0 1  
    Ejercicio Angina      
    Pendiente 1 3  
    Buques principales 0 2  
    Thal Normal Normal  
  5. Haga clic en Aceptar.

Interpretar los resultados

Minitab utiliza los árboles de clasificación con potenciación del gradiente en los resultados para estimar la probabilidad de clase de un evento de enfermedad cardíaca para un conjunto de valores de predicción. Los investigadores encuentran que la probabilidad de un evento de enfermedad cardíaca utilizando la configuración especificada es aproximadamente 0.185 para el primer conjunto y 0.55 para el segundo conjunto.

Edad = 35, Descansar la presión arterial = 140, Colesterol = 233, Frecuencia cardíaca máxima = 150, Old Peak = 2.3, Sexo = Masculino, Azúcar en la sangre en ayunas = Verdad, Ejercicio Angina = "", Rest ECG = 0, Pendiente = 1, Thal = Normal, Tipo de dolor torácico = 2, Buques principales = 0

Predicción Prob. (Clase Prob. (Clase Obs Clase = Sí) = No) 1 No 0.145216 0.854784

Edad = 35, Descansar la presión arterial = 140, Colesterol = 233, Frecuencia cardíaca máxima = 165, Old Peak = 2.3, Sexo = Mujer, Azúcar en la sangre en ayunas = Verdad, Ejercicio Angina = "", Rest ECG = 1, Pendiente = 3, Thal = Normal, Tipo de dolor torácico = 1, Buques principales = 2

Predicción Prob. (Clase Prob. (Clase Obs Clase = Sí) = No) 2 No 0.426671 0.573329
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política