Ejemplo de predicción con Clasificación Random Forests®

Nota

Este comando está disponible con el Módulo de análisis predictivo. Haga doble clic aquí para obtener información sobre cómo activar el módulo.

Un equipo de investigadores recopila y publica información detallada acerca de los factores que afectan a las cardiopatías. Las variables incluyen edad, sexo, niveles de colesterol, frecuencia cardíaca máxima, entre otras. Este ejemplo se basa en un conjunto de datos públicos que proporcionan información detallada acerca de la cardiopatía. Los datos originales provienen de archive.ics.uci.edu.

El investigador puede utilizar el modelo de árboles de clasificación Random Forest para predecir las probabilidades de clase de respuesta para nuevas observaciones.

  1. Complete el Ejemplo de Clasificación Random Forests®.
  2. Haga clic en el botón Predecir al final de los resultados.
  3. En la lista desplegable, seleccione Ingresar valores individuales.
  4. Ingrese los siguientes valores. En este ejemplo se utilizan 2 valores para cada predictor, pero usted puede utilizar hasta 3 valores.
    Edad 35 35  
    Descansar la presión arterial 140 140  
    Colesterol 233 233  
    Frecuencia cardíaca máxima 150 165  
    Old Peak 2.3 2.3  
    Sexo Masculino Mujer  
    Tipo de dolor torácico 2 1  
    Azúcar en la sangre en ayunas Verdad Verdad  
    Rest ECG 0 1  
    Ejercicio Angina      
    Pendiente 1 3  
    Buques principales 0 2  
    Thal Normal Normal  
  5. Haga clic en Aceptar.

Interpretar los resultados

Minitab utiliza los árboles de clasificación Random Forest en los resultados para estimar la probabilidad de clase de un evento de diagnóstico de enfermedad cardíaca para un conjunto de valores de predicción. Los investigadores encuentran que la probabilidad de un evento de diagnóstico de enfermedad cardíaca utilizando la configuración especificada es aproximadamente 0.83 para el primer conjunto y 0.62 para el segundo conjunto.

Random Forests® Clasificación: Enfermedad c vs Edad, Descansar la, ...

Método Validación del modelo Validación con datos de "out-of-bag" Número de muestras de bootstrap 300 Tamaño de la muestra: Igual que el tamaño de los datos de entrenamiento de 303 Número de predictores seleccionados para la división de nodos Raíz cuadrada del número total de predictores = 3 Tamaño mínimo del nodo interno 2 Filas utilizadas 303
Información de respuesta binaria Variable Clase Conteo % Enfermedad cardíaca Sí (Evento) 139 45.87 No 164 54.13 Todo 303 100.00
Predecir... Random Forests® Predicción de Clasificación

Predicción para Enfermedad cardíaca

Configuración Edad = 35, Descansar la presión arterial = 140, Colesterol = 233, Frecuencia cardíaca máxima = 150, Old Peak = 2.3, Sexo = Masculino, Tipo de dolor torácico = 2, Azúcar en la sangre en ayunas = Verdad, Rest ECG = 0, Ejercicio Angina = "", Pendiente = 1, Buques principales = 0, Thal = Normal
Predicción Prob. Prob. (Clase (Clase Obs Clase = Sí) = No) 1 No 0.17 0.83

Predicción para Enfermedad cardíaca

Configuración Edad = 35, Descansar la presión arterial = 140, Colesterol = 233, Frecuencia cardíaca máxima = 165, Old Peak = 2.3, Sexo = Mujer, Tipo de dolor torácico = 1, Azúcar en la sangre en ayunas = Verdad, Rest ECG = 1, Ejercicio Angina = "", Pendiente = 3, Buques principales = 2, Thal = Normal
Predicción Prob. (Clase Prob. (Clase Obs Clase = Sí) = No) 2 No 0.383333 0.616667
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política