Calibración o regresión inversa

Calcula la estimación del punto y del intervalo para un nuevo valor de X, la variable predictora independiente en una ecuación de regresión simple, para una nueva determinación especificada de Y, la variable dependiente (respuesta). Este método, mencionado a veces como una "regresión inversa" o calibración estadística, tiene aplicaciones técnicas en la validación de nuevos instrumentos o la evaluación de valores "desconocidos" de las muestras en función de un conjunto de valores estándar.

Descargar la macro

Asegúrese de que Minitab sepa dónde buscar la macro descargada. Elija Herramientas > Opciones > General. En Ubicación de la macro, navegue hasta la ubicación donde guarda los archivos de macro.

Important

Si utiliza un explorador web más antiguo, cuando haga clic en el botón Descargar, el archivo podría abrirse en Quicktime, que comparte la extensión de archivos .mac con las macros de Minitab. Para guardar la macro, haga clic con el botón derecho en el botón Descargar y elija Guardar destino como.

Entradas requeridas

  • Una columna de valores dependientes (Y)
  • Una columna de valores independientes (X)
  • Una columna de valores futuros/nuevos para la Y dependiente

Entradas opcionales

CLEVEL K
El nivel de confianza predeterminado para el intervalo de confianza es 95%, pero usted puede cambiar el nivel de confianza utilizando el subcomando CLEVEL, seguido del nivel de confianza que desee utilizar (1-99).

Ejecución de la macro

Supongamos que su Y está en C1, que X está en C2 y que los nuevos valores de Y están en C3, y usted desea un nivel de confianza de 99%. Elija Editar > Editor de la línea de comandos y escriba:
%CALIB C1 C2 C3;
CLEVEL 99.

Haga clic en Enviar comandos.

Información adicional

Una aproximación de muestras grandes para un intervalo de confianza alrededor de una estimación de punto de X se proporciona en las pp. 172-174 del texto Neter, Wasserman y Kutner de 1985, Applied Linear Statistical Models. La macro de Minitab CALIB.MAC realiza este análisis por usted. (El problema 5.24 en la página 180 de Neter, Wasserman y Kutner se utiliza para hacer una demonstración de esta macro. Este problema hace referencia a un conjunto de datos del problema 2.18 de la página 55. Los datos se proporcionan debajo del planteamiento del problema.)

La variable de respuesta dependiente, Y, es la dureza de los elementos moldeados de plástico (medida en unidades Brinell) y la variable predictora independiente, X, es el tiempo transcurrido medido en horas desde el final del proceso de moldeo. El conjunto de 12 observaciones pareadas forman una relación funcional de línea recta, con la solución de regresión lineal Y = 153.9 + 2.42X. El problema entonces requiere calcular un intervalo de confianza de 99 % alrededor del número estimado de horas (X) asociado a un elemento con una dureza (Y) de 298. En el ejemplo, los valores de Y de 200, 250, 298, 325 y 350 se agregaron para mostrar que la macro podía manejar múltiples valores de Y al mismo tiempo.

Ingrese las 3 columnas de datos siguientes en C1, C2 y C3.

Y X Nueva
230 32 200
262 48 250
323 72 298
298 64 325
255 48 350
199 16  
248 40  
279 48  
267 48  
214 24  
359 80  
305 56  

Para ejecutar la macro, elija Editar > Editor de línea de comandos y escriba el comando

%CALIB C1 C2 C3;
CLEVEL 99.

Haga clic en Enviar comandos. La salida será como ésta:

 La ecuación de regresión es Y = 154 + 2.42 X Predictor Coef EE Coef T P Constante 153.917 8.067 19.08 0.000 X 2.4167 0.1575 15.35 0.000 S = 9.75833 R-cuad. = 95.9 % R-cuad.(ajust) = 95.5 % Análisis de varianza Fuente GL SC CM F P Regresión 1 22427 22427 235.51 0.000 Error Residual 10 952 95 Total 11 23379 Los Intervalos de confianza de 95.00 % para los valores pronosticados de X Row Y_New CI_Low X_Hat CI_High Width 1 200 8.8056 19.0690 29.3323 20.5268 2 250 30.3180 39.7586 49.1992 18.8812 3 298 50.1055 59.6207 69.1359 19.0304 4 325 60.8611 70.7931 80.7251 19.8640 5 350 70.6098 81.1379 91.6660 21.0562 El factor de corrección es 0.0210800, que es menos de 0.1 lo que indica que los intervalos por encima son probablemente nuevas aproximaciones. 
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política