Interpretar los estadísticos para Almacenar estadísticos descriptivos

Encuentre definiciones y ayuda para interpretar cada uno de los estadísticos que se proporcionan con almacenar estadísticos descriptivos.

Media

La media es el promedio de los datos, que es la suma de todas las observaciones dividida entre el número de observaciones.

Por ejemplo, los tiempos de espera (en minutos) de cinco clientes en un banco son: 3, 2, 4, 1 y 2. El tiempo medio de espera se calcula de la siguiente manera:
En promedio, un cliente espera 2.4 minutos para ser atendido en el banco.

Interpretación

Utilice la media para describir la muestra con un solo valor que representa el centro de los datos. Muchos análisis estadísticos utilizan la media como una medida estándar del centro de la distribución de los datos.

Tanto la mediana como la media miden la tendencia central. Sin embargo, valores poco comunes, llamados valores atípicos, pueden afectar a la mediana menos de lo que afectan a la media. Si los datos son simétricos, la media y la mediana son similares.
Simétrica
No simétrica

En la distribución simétrica, la media (línea azul) y la mediana (línea naranja) son tan similares que no es fácil distinguir las dos líneas. En cambio, la distribución no simétrica es asimétrica hacia la derecha.

EE de la media

El error estándar de la media (EE de la media) estima la variabilidad entre las medias de las muestras que usted obtendría si tomara muestras repetidas de la misma población. Mientras que el error estándar de la media estima la variabilidad entre las muestras, la desviación estándar mide la variabilidad dentro de una misma muestra.

Por ejemplo, usted tiene un tiempo de entrega medio de 3.80 días, con una desviación estándar de 1.43 días, de una muestra aleatoria de 312 tiempos de entrega. Estos números producen un error estándar de la media de 0.08 días (1.43 dividido entre la raíz cuadrada de 312). De haber tomado múltiples muestras aleatorias del mismo tamaño y de la misma población, la desviación estándar de esas medias diferentes de las muestras habría sido aproximadamente 0.08 días.

Interpretación

Utilice el error estándar de la media para determinar el grado de precisión con el que la media de la muestra estima la media de la población.

Un valor del error estándar de la media más bajo indica una estimación más precisa de la media de la población. Por lo general, una desviación estándar más grande se traducirá en un mayor error estándar de la media y una estimación menos precisa de la media de la población. Un tamaño de muestra más grande dará como resultado un menor error estándar de la media y una estimación más precisa de la media de la población.

Minitab utiliza el error estándar de la media para calcular el intervalo de confianza.

Desv.Est.

La desviación estándar es la medida de dispersión más común, que indica qué tan dispersos están los datos alrededor de la media. El símbolo σ (sigma) se utiliza frecuentemente para representar la desviación estándar de una población, mientras que s se utiliza para representar la desviación estándar de una muestra. La variación que es aleatoria o natural de un proceso se conoce comúnmente como ruido.

Debido a que la desviación estándar utiliza las mismas unidades que los datos, generalmente es más fácil de interpretar que la varianza.

Interpretación

Utilice la desviación estándar para determinar qué tan dispersos están los datos con respecto a la media. Un valor de desviación estándar más alto indica una mayor dispersión de los datos. Una buena regla empírica para una distribución normal es que aproximadamente 68% de los valores se ubican a no más de una desviación estándar de la media, 95% de los valores se ubican a no más de dos desviaciones estándar y 99.7% de los valores se ubican a no más de tres desviaciones estándar.

La desviación estándar también se puede utilizar para establecer un valor de referencia para estimar la variación general de un proceso.
Hospital 1
Hospital 2
Tiempos de egreso de un hospital

Los administradores dan seguimiento al tiempo de egreso de los pacientes que son tratados en las áreas de urgencia de dos hospitales. Aunque los tiempos de egreso promedio son aproximadamente iguales (35 minutos), las desviaciones estándar son significativamente diferentes. La desviación estándar del hospital 1 es de aproximadamente 6. En promedio, el tiempo para dar de alta a un paciente se desvía de la media (línea discontinua) aproximadamente 6 minutos. La desviación estándar del hospital 2 es de aproximadamente 20. En promedio, el tiempo para dar de alta a un paciente se desvía de la media (línea discontinua) aproximadamente 20 minutos.

Varianza

La varianza mide qué tan dispersos están los datos alrededor de su media. La varianza es igual a la desviación estándar elevada al cuadrado.

Interpretación

Mientras mayor sea la varianza, mayor será la dispersión de los datos.

Puesto que la varianza (σ2) es una cantidad elevada al cuadrado, sus unidades también están elevadas al cuadrado, lo que puede dificultar el uso de la varianza en la práctica. La desviación estándar generalmente es más fácil de interpretar porque utiliza las mismas unidades que los datos. Por ejemplo, una muestra del tiempo de espera en una parada de autobuses puede tener una media de 15 minutos y una varianza de 9 minutos2. Debido a que la varianza no está en las mismas unidades que los datos, la varianza suele mostrarse con su raíz cuadrada, la desviación estándar. Una varianza de 9 minutos2 es equivalente a una desviación estándar de 3 minutos.

CoefVar

El coeficiente de variación (denotado como COV) es una medida de dispersión que describe la variación en los datos en relación con la media. El coeficiente de variación se ajusta de manera que los valores estén en una escala sin unidades. Gracias a este ajuste, usted puede utilizar el coeficiente de variación en lugar de la desviación estándar para comparar la variación de los datos que tienen unidades diferentes o medias muy diferentes.

Interpretación

Mientras mayor sea el coeficiente de variación, mayor será la dispersión en los datos.

Por ejemplo, usted es el inspector de control de calidad de una planta embotelladora de leche que embotella el producto en recipientes pequeños y grandes. Usted toma una muestra de cada producto y observa que el volumen medio de los recipientes pequeños es de una 1 taza, con una desviación estándar de 0.08 tazas, y el volumen medio de los recipientes grandes es de 1 galón (16 tazas) con una desviación estándar de 0.4 tazas. Aunque la desviación estándar del recipiente de un galón es cinco veces mayor que la desviación estándar del recipiente pequeño, los coeficientes de variación apoyan una conclusión diferente.
Recipiente grande Recipiente pequeño
COV = 100 * 0.4 tazas / 16 tazas = 2.5 COV = 100 * 0.08 tazas / 1 taza = 8
El coeficiente de variación del recipiente pequeño es más de tres veces mayor que el coeficiente de variación del recipiente grande. En otras palabras, aunque el recipiente grande tiene una mayor desviación estándar, el recipiente pequeño presenta una variabilidad mucho mayor con respecto a su media.

Q1

Los cuartiles son los tres valores –el primer cuartil en 25% (Q1), el segundo cuartil en 50% (Q2 o mediana) y el tercer cuartil en 75% (Q3)– que dividen una muestra de datos ordenados en cuatro partes iguales.

El primer cuartil es el percentil 25 e indica que 25% de los datos es menor que o igual a este valor.

Para estos datos ordenados, el primer cuartil (Q1) es 9.5. Es decir, 25% de los datos es menor que o igual a 9.5.

Mediana

La mediana es el punto medio del conjunto de datos. El valor de este punto medio es el punto en el cual la mitad de las observaciones está por encima del valor y la otra mitad está por debajo del valor. La mediana se determina jerarquizando las observaciones y hallando la observación que ocupe el número [N + 1] / 2 en el orden jerarquizado. Si el número de observaciones es par, entonces la mediana es el valor promedio de las observaciones jerarquizadas en los números N / 2 y [N / 2] + 1.

Para estos datos ordenados, la mediana es 13. Es decir, la mitad de los valores es menor que o igual a 13 y la otra mitad de los valores es mayor que o igual a 13. Si usted agrega otra observación igual a 20, la mediana es 13.5, que es el promedio entre la 5ta observación (13) y la 6ta observación (14).

Interpretación

Tanto la mediana como la media miden la tendencia central. Sin embargo, valores poco comunes, llamados valores atípicos, pueden afectar a la mediana menos de lo que afectan a la media. Si los datos son simétricos, la media y la mediana son similares.
Simétrica
No simétrica

En la distribución simétrica, la media (línea azul) y la mediana (línea naranja) son tan similares que no es fácil distinguir las dos líneas. En cambio, la distribución no simétrica es asimétrica hacia la derecha.

Q3

Los cuartiles son los tres valores –el primer cuartil en 25% (Q1), el segundo cuartil en 50% (Q2 o mediana) y el tercer cuartil en 75% (Q3)– que dividen una muestra de datos ordenados en cuatro partes iguales.

El tercer cuartil es el percentil 75 e indica que 75% de los datos es menor que o igual a este valor.

Para estos datos ordenados, el tercer cuartil (Q3) es 17.5. Es decir, 75% de los datos es menor que o igual a 17.5.

IQR

El rango intercuartil (IQR) es la distancia entre el primer cuartil (Q1) y el tercer cuartil (Q3). El 50% de los datos está dentro de este rango.

Para estos datos ordenados, el rango intercuartil es 8 (17.5–9.5 = 8). Es decir, el 50% intermedio de los datos está entre 9.5 and 17.5.

Interpretación

Utilice el rango intercuartil para describir la dispersión de los datos. A medida que aumenta la dispersión de los datos, el IQR se hace más grande.

MediaRec

La media de los datos sin el 5% superior ni el 5% inferior de los valores.

Utilice la media recortada para eliminar el impacto de los valores muy grandes o muy pequeños sobre la media. Cuando los datos contienen valores atípicos, la media recortada puede ser una mejor medida de la tendencia central que la media.

Suma

La suma es el total de todos los valores de los datos. La suma también se utiliza en cálculos estadísticos, como por ejemplo la media y la desviación estándar.

Mínimo

El mínimo es el valor más pequeño de los datos.

En estos datos, el mínimo es 7.

13 17 18 19 12 10 7 9 14

Interpretación

Utilice el mínimo para identificar un posible valor atípico o un error de entrada de datos. Una de las maneras más sencillas de evaluar la dispersión de los datos consiste en comparar el mínimo y el máximo. Si el valor mínimo es muy bajo, incluso cuando considere el centro, la dispersión y la forma de los datos, investigue la causa del valor extremo.

Máximo

El máximo es el valor más grande de los datos.

En estos datos, el máximo es 19.

13 17 18 19 12 10 7 9 14

Interpretación

Utilice el máximo para identificar un posible valor atípico o error de entrada de datos. Una de las maneras más sencillas de evaluar la dispersión de los datos consiste en comparar el mínimo y el máximo. Si el valor máximo es muy alto, incluso cuando considere el centro, la dispersión y la forma de los datos, investigue la causa del valor extremo.

Rango

El rango es la diferencia entre los valores más grande y más pequeño de los datos. El rango representa el intervalo que contiene todos los valores de los datos.

Interpretación

Utilice el rango para entender la cantidad de dispersión en los datos. Un valor de rango grande indica mayor dispesión en los datos. Un valor de rango pequeño indica que hay menos dispersión en los datos. Puesto que el rango se calcula usando solo dos valores de los datos, es más útil con conjuntos de datos pequeños.

SSQ

La suma de los cuadrados no corregida es la suma de los cuadrados de cada valor de la columna. Por ejemplo, si la columna contiene x1, x2, ... , xn, entonces la suma de los cuadrados calcula (x12 + x22 + ... + xn2). A diferencia de la suma de los cuadrados corregida, la suma de los cuadrados no corregida incluye el error. Los valores de datos se elevan al cuadrado sin antes restar la media.

Asimetría

La asimetría es el grado en que los datos no son simétricos.

Interpretación

Utilice la asimetría como ayuda para lograr entender inicialmente los datos.
Figura A
Figura B
Distribuciones simétricas o no asimétricas

A medida que los datos se vuelven más simétricos, el valor de su asimetría se acerca a cero. La figura A muestra datos distribuidos normalmente, que por definición exhiben relativamente poca asimetría. Al dibujar una línea por debajo de la mitad de este histograma de datos normales, se puede ver fácilmente que un lado es el reflejo del otro. Pero la falta de asimetría por sí sola no implica normalidad. La figura B muestra una distribución en la que ambos lados siguen siendo un reflejo el uno del otro, a pesar de que la distribución de los datos dista mucho de ser normal.

Distribuciones asimétricas positivas o hacia la derecha

Los datos con asimetría positiva o asimétricos hacia la derecha se llaman así porque la "cola" de la distribución apunta hacia la derecha y porque el valor de asimetría es mayor que 0 (es decir, positivo). Los datos sobre salarios suelen ser asimétricos de esta manera: muchos empleados de una empresa ganan relativamente poco, mientras que cada vez menos personas ganan salarios muy elevados.

Distribuciones asimétricas negativas o hacia la izquierda

Los datos asimétricos hacia la izquierda o con asimetría negativa se llaman así porque la "cola" de la distribución apunta hacia la izquierda y porque producen un valor de asimetría negativo. Los datos de tasas de fallas suelen ser asimétricos a la izquierda. Consideremos el caso de las bombillas: muy pocas se quemarán inmediatamente, la gran mayoría dura un tiempo considerablemente largo.

Curtosis

La curtosis indica la manera en que el pico y las colas de una distribución difieren de la distribución normal.

Interpretación

Utilice la curtosis para lograr entender inicialmente las características generales de la distribución de los datos.
Línea base: Valor de curtosis de 0

Los datos normalmente distribuidos establecen la línea base para la curtosis. Un valor de curtosis de 0 indica que los datos siguen perfectamente la distribución normal. Un valor de curtosis que se desvíe significativamente de 0 puede indicar que los datos no están distribuidos normalmente.

Curtosis positiva

Una distribución que tiene un valor positivo de curtosis indica que la distribución tiene colas más pesadas y un pico más pronunciado que la distribución normal. Por ejemplo, los datos que siguen una distribución t tienen un valor positivo de curtosis. La línea continua indica la distribución normal y la línea de puntos indica una distribución que tiene un valor positivo de curtosis.

Curtosis negativa

Una distribución con un valor negativo de curtosis indica que la distribución tiene colas más ligeras y un pico más plano que la distribución normal. Por ejemplo, los datos que siguen una distribución beta con el primer y el segundo parámetro de forma iguales a 2 tienen un valor negativo de curtosis. La línea continua indica la distribución normal y la línea de puntos indica una distribución que tiene un valor negativo de curtosis.

MSSD

La MSSD es la media de las diferencias sucesivas cuadráticas. La MSSD es una estimación de la varianza. Un posible uso de la MSSD es para probar si una secuencia de observaciones es aleatoria. En control de calidad, un posible uso de la MSSD es para estimar la varianza cuando el tamaño del subgrupo = 1.

N

El número de valores presentes en la muestra.

En este ejemplo, hay 141 observaciones registradas.
Conteo total N N*
149 141 8

N valores faltantes

El número de valores faltantes en la muestra. El número de valores faltantes se refiere a las celdas que contienen el símbolo de valor faltante *.

En este ejemplo, 8 errores ocurrieron durante la recolección de datos y se registraron como valores faltantes.
Conteo total N N valores faltantes
149 141 8

Conteo

El número total de observaciones en la columna. Utilícese para representar la suma de N valores faltantes y N valores presentes.

En este ejemplo, hay 141 observaciones válidas y 8 valores faltantes. El conteo es 149.
Conteo N N valores faltantes
149 141 8

NAcum

N acumulado es un total acumulado del número de observaciones en categorías sucesivas. Por ejemplo, una escuela primaria registra el número de estudiantes de primero a sexto grado. La columna NAcum contiene el conteo acumulado de la población estudiantil:
Nivel de grado Conteo NAcum Cálculo
1 49 49 49
2 58 107 49 + 58
3 52 159 49 + 58 + 52
4 60 219 49 + 58 + 52 + 60
5 48 267 49 + 58 + 52 + 60 + 48
6 55 322 49 + 58 + 52 + 60 + 48 + 55

Porcentaje

El porcentaje de observaciones en cada grupo de la Por variable. En el siguiente ejemplo, hay cuatro grupos: Línea 1, Línea 2, Línea 3 y Línea 4.

Grupo (por variable) Porcentaje
Línea 1 16
Línea 2 20
Línea 3 36
Línea 4 28

PAcum

El porcentaje acumulado es la suma acumulada de los porcentajes para cada grupo de la Por variable. En el siguiente ejemplo, la Por variable tiene 4 grupos: Línea 1, Línea 2, Línea 3 y Línea 4.

Grupo (por variable) Porcentaje PAcum
Línea 1 16 16
Línea 2 20 36
Línea 3 36 72
Línea 4 28 100
Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política