Tabla Análisis secuencial de varianza para Gráfica de línea ajustada

Encuentre definiciones e interpretaciones para cada uno de los estadísticos incluidos en la tabla Análisis secuencial de varianza.

GL

Los grados de libertad total (GL) son la cantidad de información en los datos. El análisis utiliza esa información para estimar los valores de los parámetros de población infinita. El GL total está determinado por el número de observaciones en la muestra. El GL de un término muestra cuánta información utiliza el término. Si incrementa el tamaño de la muestra, obtendrá más información sobre la población, con lo cual aumentan los GL total. Si incrementa el número de términos en su modelo, utilizará más información, con lo cual disminuyen los GL disponibles para estimar la variabilidad de los estimados de parámetros.

Si se cumplen dos condiciones, entonces Minitab particiona los GL para error. La primera condición es que debe haber términos que se pueden ajustar con los datos que no están incluidos en el modelo actual. Por ejemplo, si se tiene un predictor continuo con 3 o más valores distintos, se puede estimar un término cuadrático para ese predictor. Si el modelo no incluye el término cuadrático, entonces no está incluido en el modelo un término que los datos pueden ajustar y se cumple esta condición.

La segunda condición es que los datos contienen replicas. Las replicas son observaciones donde cada predictor tiene el mismo valor. Por ejemplo, si se tienen 3 observaciones en las que la presión es de 5 y la temperatura es de 25, entonces esas 3 observaciones son replicas.

Si se cumplen las dos condiciones, entonces las dos partes de los GL para error son falta de ajuste y error puro. Los GL para la falta de ajuste permiten probar si la forma del modelo es adecuada. La prueba de falta de ajuste utiliza los grados de libertad para la falta de ajuste. Mientras más GL para error puro, mayor es la potencia de la prueba de falta de ajuste.

SC

Las sumas secuenciales de los cuadrados (SC) son medidas de variación para los diferentes componentes del modelo. A diferencia de las sumas ajustadas de los cuadrados, las sumas secuenciales de los cuadrados dependen del orden en el que los términos son ingresados en el modelo. En la tabla Análisis secuencial de varianza, Minitab separa las sumas secuenciales de los cuadrados por los términos polinómicos (es decir, lineales, cuadráticos y cúbicos) incluidos en el modelo.

SC
Las sumas secuenciales de los cuadrados de cada término polinómico son la única porción de la variación explicada por ese término que no es explicada por los términos de orden inferior ya ingresados en el modelo. Cuantifica la cantidad de variación en los datos de respuesta que es explicada por cada término polinómico a medida que son agregados secuencialmente al modelo.
SC sec. total
La suma total de los cuadrados es la suma de la suma de los cuadrados del término y la suma de los cuadrados del error. Cuantifica la variación total en los datos.

Interpretación

Minitab utiliza las sumas de los cuadrados secuenciales para calcular el valor p de un término. Minitab también utiliza las sumas de los cuadrados para calcular el estadístico de R2. Generalmente, se interpretan los valores p y el estadístico de R2 ajustado en lugar de las sumas de los cuadrados.

Valor F

El valor F es el estadístico de prueba utilizado para determinar si el modelo está asociado con la respuesta.

Interpretación

Minitab utiliza el valor F para calcular el valor p, que se usa para tomar una decisión acerca de la significancia estadística del modelo. El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Un valor F lo suficientemente grande indica que el el modelo es significativo.

Si desea usar el valor F para determinar si puede rechazar la hipótesis nula, compare el valor F con su valor crítico. Puede calcular el valor crítico en Minitab o buscar el valor crítico en una tabla de la distribución F en la mayoría de los libros de estadística. Para obtener más información sobre cómo usar Minitab para calcular el valor crítico, vaya a Uso de la función de distribución acumulada inversa (ICDF) y haga clic en "Usar la ICDF para calcular valores críticos".

Valor p – Término

El valor p es una probabilidad que mide la evidencia en contra de la hipótesis nula. Las probabilidades más bajas proporcionan una evidencia más fuerte en contra de la hipótesis nula.

Interpretación

Para determinar si la asociación entre la respuesta y cada término incluido en el modelo es estadísticamente significativa, compare el valor p del término con el nivel de significancia para evaluar la hipótesis nula. La hipótesis nula es que el coeficiente del término es igual a cero, lo que indica que no hay asociación entre el término y la respuesta. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que existe una asociación cuando no hay una asociación real.
Valor p ≤ α: La asociación es estadísticamente significativa
Si el valor p es menor que o igual al nivel de significancia, usted puede concluir que hay una asociación estadísticamente significativa entre la variable de respuesta y el término. Si ajusta un modelo cuadrático o cúbico y los términos cuadráticos o cúbicos son significativos, puede concluir que los datos contienen curvatura.
Valor p > α: La asociación no es estadísticamente significativa

Si el valor p es mayor que el nivel de significancia, usted no puede concluir que existe una asociación estadísticamente significativa entre la variable de respuesta y el término. Si ajusta un modelo cuadrático o cúbico y los términos cuadráticos o cúbicos no son estadísticamente significativos, convendría que seleccione un modelo diferente.

Al utilizar este sitio, usted acepta el uso de cookies para efectos de análisis y contenido personalizado.  Leer nuestra política